Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: A potential mechanism for protease inhibitor-induced hyperlipidemia

Abstract

Highly active anti-retroviral therapies, which incorporate HIV protease inhibitors, resolve many AIDS-defining illnesses. However, patients receiving protease inhibitors develop a marked lipodystrophy and hyperlipidemia. Using cultured human and rat hepatoma cells and primary hepatocytes from transgenic mice, we demonstrate that protease inhibitor treatment inhibits proteasomal degradation of nascent apolipoprotein B, the principal protein component of triglyceride and cholesterol-rich plasma lipoproteins. Unexpectedly, protease inhibitors also inhibited the secretion of apolipoprotein B. This was associated with inhibition of cholesteryl-ester synthesis and microsomal triglyceride transfer-protein activity. However, in the presence of oleic acid, which stimulates neutral-lipid biosynthesis, protease-inhibitor treatment increased secretion of apolipoprotein B-lipoproteins above controls. These findings suggest a molecular basis for protease-inhibitor–associated hyperlipidemia, a serious adverse effect of an otherwise efficacious treatment for HIV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PI treatment results in the accumulation of cellular ApoB and ubiquitin-associated ApoB in HepG2 cells.
Figure 2: PI treatment results in marked alterations in neutral-lipid synthesis and transfer.
Figure 3: PI treatment increases net secretion of ApoB-containing lipoproteins in the presence of added fatty acids.
Figure 4: RTV increases the secretion and buoyant density of ApoB-containing lipoproteins in McA RH7777 cells.
Figure 5: RTV-inhibition of apoB secretion and neutral lipid synthesis is reversed by oleic acid in cultured primary hepatocytes from ApoB transgenic mice.

Similar content being viewed by others

References

  1. Danner, S.A. et al. A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. European-Australian Collaborative Ritonavir Study Group. N. Engl. J. Med. 333, 1528–1533 (1995).

    Article  CAS  Google Scholar 

  2. Hammer, S.M. et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N. Engl. J. Med. 337, 725–733 (1997).

    Article  CAS  Google Scholar 

  3. Carpenter, C.C. et al. Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel. JAMA 283, 381–390 (2000).

    Article  CAS  Google Scholar 

  4. Carr, A. et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 12, F51–58 (1998).

    Article  Google Scholar 

  5. Carr, A., Samaras, K., Chisholm, D.J. & Cooper, D.A. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 351, 1881–1883 (1998).

    Article  CAS  Google Scholar 

  6. Carr, A. et al. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet 353, 2093–2099 (1999).

    Article  CAS  Google Scholar 

  7. Purnell, J.Q. et al. Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS 14, 51–57 (2000).

    Article  CAS  Google Scholar 

  8. Henry, K. et al. Severe premature coronary artery disease with protease inhibitors. Lancet 351, 1328 (1998).

    Article  CAS  Google Scholar 

  9. Steinberg, D. et al. Lipoproteins and the pathogenesis of atherosclerosis. Circulation 80, 719–723 (1989).

    Article  CAS  Google Scholar 

  10. Dixon, J.L. & Ginsberg, H.N. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: Information obtained from cultured liver cells. J. Lipid Res. 34, 167–179 (1993).

    CAS  PubMed  Google Scholar 

  11. Yao, Z., Tran, K. & McLeod, R.S. Intracellular degradation of newly synthesized apolipoprotein B. J. Lipid Res. 38, 1937–1953 (1997).

    CAS  PubMed  Google Scholar 

  12. Liao, W., Yeung, S.C. & Chan, L. Proteasome-mediated degradation of apolipoprotein B targets both nascent peptides cotranslationally before translocation and full-length apolipoprotein B after translocation into the endoplasmic reticulum. J. Biol. Chem. 273, 27225–27230 (1998).

    Article  CAS  Google Scholar 

  13. Fisher, E.A. et al. The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J. Biol. Chem. 272, 20427–20434 (1997).

    Article  CAS  Google Scholar 

  14. Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl. Acad. Sci. USA 95, 13120–13124 (1998).

    Article  CAS  Google Scholar 

  15. Deeks, S.G., Smith, M., Holodniy, M. & Kahn, J.O. HIV-1 protease inhibitors. A review for clinicians. JAMA 277, 145–153 (1997).

    Article  CAS  Google Scholar 

  16. Mitchell, D.M. et al. Apoprotein B100 has a prolonged interaction with the translocon during which its lipidation and translocation change from dependence on the microsomal triglyceride transfer protein to independence. Proc. Natl. Acad. Sci. USA 95, 14733–14738 (1998).

    Article  CAS  Google Scholar 

  17. Lenhard, J.M., Croom, D.K., Weiel, J.E. & Winegar, D.A. HIV protease inhibitors stimulate hepatic triglyceride synthesis. Arterioscler. Thromb. Vasc. Biol. 20, 2625–2629 (2000).

    Article  CAS  Google Scholar 

  18. Carr, T.P., Hamilton, R.L.J. & Rudel, L.L. ACAT inhibitors decrease secretion of cholesteryl esters and apolipoprotein B by perfused livers of African green monkeys. J. Lipid Res. 36, 25–36 (1995).

    CAS  PubMed  Google Scholar 

  19. Huff, M.W., Telford, D.E., Barrett, P.H., Billheimer, J.T. & Gillies, P.J. Inhibition of hepatic ACAT decreases ApoB secretion in miniature pigs fed a cholesterol-free diet. Arterioscler. Thromb. 14, 1498–1508 (1994).

    Article  CAS  Google Scholar 

  20. Billheimer, J.T. et al. The Diarylthioimidazole, DuP 128, is a potent inhibitor of acyl-CoA:Cholesterol Acyltransferase (ACAT). Ninth International Symposium on Atherosclerosis 184, A94 (1991).

    Google Scholar 

  21. Wetterau, J.R. et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282, 751–754 (1998).

    Article  CAS  Google Scholar 

  22. Wu, X., Sakata, N., Lui, E. & Ginsberg, H.N. Evidence for a lack of regulation of the assembly and secretion of apolipoprotein B-containing lipoprotein from HepG2 cells by cholesteryl ester. J. Biol. Chem. 269, 12375–12382 (1994).

    CAS  PubMed  Google Scholar 

  23. Shelness, G.S. & Sellers, J.A. Very-low-density lipoprotein assembly and secretion. Curr. Opin. Lipidol. 12, 151–157 (2001).

    Article  CAS  Google Scholar 

  24. Olofsson, S.O., Stillemark-Billton, P. & Asp, L. Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc. Med. 10, 338–345 (2000).

    Article  CAS  Google Scholar 

  25. Breslow, J.L. Mouse models of atherosclerosis. Science 272, 685–688 (1996).

    Article  CAS  Google Scholar 

  26. Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106, 453–458 (2000).

    Article  CAS  Google Scholar 

  27. Moyle, G.J. & Gazzard, B.G. A risk-benefit assessment of HIV protease inhibitors. Drug Saf 20, 299–321 (1999).

    Article  CAS  Google Scholar 

  28. Flynn, T.E. & Bricker, L.A. Myocardial infarction in HIV-infected men receiving protease inhibitors. Ann. Intern. Med. 131, 548 (1999).

    Article  CAS  Google Scholar 

  29. Callow, M.J., Verstuyft, J., Tangirala, R., Palinski, W. & Rubin, E.M. Atherogenesis in transgenic mice with human apolipoprotein B and lipoprotein (a). J. Clin. Invest. 96, 1639–1646 (1995).

    Article  CAS  Google Scholar 

  30. Honkakoski, P. & Negishi, M. Protein serine/threonine phosphatase inhibitors suppress phenobarbital-induced Cyp2b10 gene transcription in mouse primary hepatocytes. Biochem. J. 330, 889–895 (1998).

    Article  CAS  Google Scholar 

  31. Dixon, J.L., Furukawa, S. & Ginsberg, H.N. Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. J. Biol. Chem. 266, 5080–5086 (1991).

    CAS  PubMed  Google Scholar 

  32. Zhou, M., Fisher, E.A. & Ginsberg, H.N. Regulated Co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein. J. Biol. Chem. 273, 24649–24653 (1998).

    Article  CAS  Google Scholar 

  33. Billheimer, J.T., Tavani, D. & Nes, W.R. Effect of a dispersion of cholesterol in Triton WR-1339 on acyl CoA: cholesterol acyltransferase in rat liver microsomes. Anal. Biochem. 111, 331–335 (1981).

    Article  CAS  Google Scholar 

  34. Wetterau, J.R. et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 258, 999–1001 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Buss for the PIs used in this study; J. Billheimer for rat liver microsomes; and J. D. Rich and S. Santos for encouragement at the early stages of this work. This study was supported by Glaxo–Wellcome, Roche Products (Australia) and Merck and Company (to D.C.), NIH HL55638 (to H.G.), HL40404 (to R.J.D.) and the Columbia-Rockefeller Center for AIDS Research (NIH P30 AI42848 pilot award to S.L.S., R.J.D. and J.L.). R.J.D. and S.L.S. were supported in part by NIH HL65954 to N. S. Shachter. NCHECR is supported by the Research Advisory Committee of the Australian National Council on AIDS, Hepatitis C and Related Diseases through the Commonwealth Department of Health and Aged Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Sturley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, JS., Distler, O., Cooper, D. et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: A potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med 7, 1327–1331 (2001). https://doi.org/10.1038/nm1201-1327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1201-1327

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing