Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Generating mice with targeted mutations

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regenera-tion of a functional neor by gene targeting.
Figure 2: Disruption of Hprt by gene targeting.
Figure 3: The positive–negative selection procedure used to enrich for ES cells containing a targeted disruption of gene X.
Figure 4: Generation of mouse germline chimeras from ES cells containing a targeted mutation.

References

  1. Stevens, L.C. The biology of teratomas. Adv. Morphog. 6, 1–31 (1967).

    Article  CAS  Google Scholar 

  2. Pierce, G.B. Teratocarcinoma: Model for a developmental concept of cancer. Curr. Topics Dev. Biol. 2, 223–246 (1967).

    Article  CAS  Google Scholar 

  3. Kleinsmith, L.J. & Pierce, G.B. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1551 (1964).

    CAS  PubMed  Google Scholar 

  4. Evans, M.J. The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratocarcinoma cells. J. Embryol. Exp. Morphol. 28, 163–196 (1972).

    CAS  PubMed  Google Scholar 

  5. Evans, M.J. & Martin, G.R. The differentiation of clonal teratocarcinoma cell culture in vitro. In Roche Symposium on Teratomas and Differentiation (eds. Solter, D. & Sherman, M.) (Academic Press, New York, 1975).

  6. Martin, G.R & Evans, M.J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA 72, 1441–1445, (1975).

    Article  CAS  Google Scholar 

  7. Papaioannou, V.E., McBurney, M., Gardner, R.L. & Evans, M.J. The fate of teratocarcinoma cells injected into early mouse embryos. Nature 258, 70–73 (1975).

    Article  CAS  Google Scholar 

  8. Gooi, H.C. et al. Stage-specific embryonic antigen involves 1-3 fucosylated type 2 blood group chains. Nature 292, 156–158 (1981).

    Article  CAS  Google Scholar 

  9. Stinnakre, M.G., Evans, M.J., Willison, K.R. & Stern, P.L. Expression of Forssman antigen in the post-implantation mouse embryo. J. Embryol. Exp. Morphol. 61, 117–131 (1981).

    CAS  PubMed  Google Scholar 

  10. Lovell-Badge, R.H. & Evans, M.J. Changes in protein synthesis during differentiation of embryonal carcinoma cells and a comparison with embryo cells. J. Embryol. Exp. Morphol. 59, 187–206 (1980).

    CAS  PubMed  Google Scholar 

  11. Evans, M.J. Origin of mouse embryonal carcinoma cells and the possibility of their direct isolation into tissue culture. J. Reprod. Fertil. 62, 625–631 (1981).

    Article  CAS  Google Scholar 

  12. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  13. Rastan, S. & Robertson, E.J. X-chromosome deletions in embryo-derived (EK) cell-lines associated with lack of X-chromosome inactivation. J. Embryol. Exp. Morph. 90, 379–388 (1985).

    CAS  PubMed  Google Scholar 

  14. Evans, M.J., Bradley, A. & Robertson, E.J. EK cell contribution to chimeric mice: from tissue culture to sperm. In Genetic Manipulation of the Early Mammalian Embryo, Banbury Report. (Cold Spring Harbor Laboratory Press, Plainview, NY, 1983).

    Google Scholar 

  15. Bradley, A., Evans, M.J., Kaufman, M.H. & Robertson, E.J. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  CAS  Google Scholar 

  16. Mann, R., Mulligan, R.C. & Baltimore, D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159 (1983).

    Article  CAS  Google Scholar 

  17. Kuehn, M.R., Bradley, A., Robertson, E.J. & Evans, M.J. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298 (1987).

    Article  CAS  Google Scholar 

  18. Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. & Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal b-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  CAS  Google Scholar 

  19. Smithies, O. Zone electrophoresis in starch gels: Group variations in the serum proteins of normal human adults. Biochem. J. 61, 629–641 (1955).

    Article  CAS  Google Scholar 

  20. Smithies, O. & Walker, N.F. Genetic control of some serum proteins in normal humans. Nature 176, 1265–1266 (1955).

    Article  CAS  Google Scholar 

  21. Sturtevant, A.H. The effects of unequal crossing over at the Bar locus in Drosophila. Genetics 10, 117–147 (1925).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Smithies, O., Connell, G.E. & Dixon, G.H. Chromosomal rearrangements and the evolution of haptoglobin genes. Nature 196, 232–236 (1962).

    Article  CAS  Google Scholar 

  23. Smithies, O. Antibody variability. Science 157, 267–273 (1967).

    Article  CAS  Google Scholar 

  24. Slightom, J.L., Blechl, A.E. & Smithies, O. Human fetal Gg and Ag globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21, 627–638 (1980).

    Article  CAS  Google Scholar 

  25. Goldfarb, M., Shimizu, K., Perucho, M. & Wigler, M. Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature 296, 404–409 (1982).

    Article  CAS  Google Scholar 

  26. Smithies, O. A Dynamic osmometer for accurate measurements on small quantities of material: Osmotic pressures of isoelectric b-lactoglobulin solutions. Biochem. J. 55, 57–67 (1953).

    Article  CAS  Google Scholar 

  27. Kim, H.S. & Smithies, O. Recombinant fragment assay for gene targetting based on the polymerase chain reaction. Nucleic Acids Res. 16, 8887–8903 (1988).

    Article  CAS  Google Scholar 

  28. Doetschman, T. et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    Article  CAS  Google Scholar 

  29. Koller, B.H. et al. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cell. Proc. Natl. Acad. Sci. USA 86, 8927–8931 (1989).

    Article  CAS  Google Scholar 

  30. Smithies, O. & Maeda, N. Gene targeting approaches to complex genetic diseases: Atherosclerosis and essential hypertension. Proc. Natl. Acad. Sci. USA 92, 5266–5272 (1995).

    Article  CAS  Google Scholar 

  31. Kim, H.-S. et al. Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl. Acad. Sci. USA 92, 2735–2739 (1995).

    Article  CAS  Google Scholar 

  32. Capecchi, M.R. Targeted gene replacement. Sci. Am. 270, 54–61 (1994).

    Article  Google Scholar 

  33. Wigler, M. et al. Transfer of purified Herpes Virus thymidine kinase gene to cultured mouse cells. Cell 11, 223–232 (1977).

    Article  CAS  Google Scholar 

  34. Capecchi, M.R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488 (1980).

    Article  CAS  Google Scholar 

  35. Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. & Ruddle, F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 77, 7380–7384 (1980).

    Article  CAS  Google Scholar 

  36. Costantini, F. & Lacy, E. Introduction of a rabbit b-globin gene into the mouse germ line. Nature 294, 92–94 (1981).

    Article  CAS  Google Scholar 

  37. Brinster, R.L. et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231 (1981).

    Article  CAS  Google Scholar 

  38. Wagner, E.F., Stewart, T.A. & Mintz, B. The human b globin gene and a functional thymidine kinase gene in developing mice. Proc. Natl. Acad. Sci. USA 78, 5016–5020 (1981).

    Article  CAS  Google Scholar 

  39. Wagner, T.E. et al. Microinjection of a rabbit b-globin gene in zygotes and its subsequent expression in adult mice and their offspring. Proc. Natl. Acad. Sci. USA 78, 6376–6380 (1981).

    Article  CAS  Google Scholar 

  40. Levinson, B., Khoury, B.G., VandeWoude, G. & Gruss, P. Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature 295, 568–572 (1982).

    Article  CAS  Google Scholar 

  41. Folger, K.R., Wong, E.A., Wahl, G. & Capecchi, M.R. Patterns of integration of DNA microinjected into cultured mammalian cells: Evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2, 1372–1387 (1982).

    Article  CAS  Google Scholar 

  42. Folger, K.R., Thomas, K.R. & Capecchi, M.R. Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei. Mol. Cell. Biol. 5, 59–69 (1985).

    Article  CAS  Google Scholar 

  43. Wong, E.A. & Capecchi, M.R. Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol. Cell. Biol. 7, 2294–2295 (1987).

    Article  CAS  Google Scholar 

  44. Thomas, K.R., Folger, K.R. & Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).

    Article  CAS  Google Scholar 

  45. Folger, K.R., Thomas, K.R. & M.R. Capecchi . Analysis of homologous recombination in cultured mammalian cells. Cold Spring Harbor Symp. Quant. Biol. 49, 123–138 (1984).

    Article  CAS  Google Scholar 

  46. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  47. Thomas, K.R., Deng, C. & Capecchi, M.R. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol. 12, 2919–2923 (1992).

    Article  CAS  Google Scholar 

  48. Deng, C. & Capecchi, M.R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).

    Article  CAS  Google Scholar 

  49. Deng, C., Thomas, K.R. & Capecchi, M.R. Location of crossovers during gene targeting with insertion and replacement vectors. Mol. Cell. Biol. 13, 2134–2140 (1993).

    Article  CAS  Google Scholar 

  50. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  Google Scholar 

  51. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capecchi, M. Generating mice with targeted mutations. Nat Med 7, 1086–1090 (2001). https://doi.org/10.1038/nm1001-1086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1001-1086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing