Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression

Abstract

Despite increasing evidence for the existence of antigen-specific regulatory T cells, the mechanisms underlying suppression remain unclear. In this study we have identified and cloned a novel subset of antigen-specific regulatory T cells and demonstrated that these T cells possess a unique combination of cell surface markers and array of cytokines. The regulatory T cells are able to inhibit the function of T cells carrying the same T-cell receptor specificity and prevent skin allograft rejection in an antigen-specific, dose-dependent manner. The regulatory T cells are able to acquire alloantigen from antigen-presenting cells, present the alloantigen to activated syngeneic CD8+ T cells and then send death signals to CD8+ T cells. These findings provide a novel mechanism of regulatory T-cell-mediated, antigen-specific suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DN T cells from the spleen of tolerant mice are able to inhibit anti-Ld responses in vivo and in vitro.
Figure 2: Dose-dependent inhibition of syngeneic CD8+ T cells in vitro by DN T cells.
Figure 3: a, DN regulatory T cells express a unique combination of cell surface markers and require direct cell contact for suppression.
Figure 4: DN T cells specifically lyse activated CD8+ T cells through the Fas/FasL pathway.
Figure 5: TCR -Ld interaction is critical for DN T-cell-mediated suppression.
Figure 6

Similar content being viewed by others

References

  1. Qin,S. et al. “Infectious” transplantation tolerance. Science 259, 974–976 ( 1993).

    Article  CAS  Google Scholar 

  2. Chen,Y., Kuchroo,V.K., Inobe, J., Hafler, D.A. & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  Google Scholar 

  3. Baxter, A.G., Kinder, S.J., Hammond, K.J.L., Scollay,R. & Godfrey,D.I. Association between αβTCR+CD4CD8 T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572 –582 (1997).

    Article  CAS  Google Scholar 

  4. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  Google Scholar 

  5. Han, H.S., Jun, H.S., Utsugi, T. & Yoon, J.W. A new type of CD4+ suppressor T cells completely prevents spontaneous autoimmune diabetes and recurrent diabetes in syngeneic islet-transplanted NOD mice. J. Autoimmune 9, 331–339 (1996).

    Article  CAS  Google Scholar 

  6. Olivares-Villagomez, D., Wang, Y. & Lafaille, J.J. Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J. Exp. Med. 188, 1883–1894 ( 1998).

    Article  CAS  Google Scholar 

  7. Cobbold, S. & Waldmann, H. Infectious tolerance. Curr. Opin. Immunol. 10, 518–524 (1998).

    Article  CAS  Google Scholar 

  8. Zhai, Y. & Kupiec-Weglinski, J.W. What is the role of regulatory T cells in transplantation tolerance? Curr. Opin. Immunol. 11, 497–503 (1999).

    Article  CAS  Google Scholar 

  9. Waldmann, H. Transplantation tolerance —where do we stand? Nature Med. 5, 1245–1248 ( 1999).

    Article  CAS  Google Scholar 

  10. Bushell, A., Niimi, M., Morris, P.J. & Wood, K.J. Evidence for immune regulation in the induction of transplantation tolerance: A conditional but limited role for IL-4. J. Immunol. 162, 1359–1366 (1999).

    CAS  PubMed  Google Scholar 

  11. Chai, J.-G. et al. Anergic T cells act as suppressor cells in vitro and in vivo. Eur. J. Immunol. 29, 686– 692 (1999).

    Article  CAS  Google Scholar 

  12. Seddon, B. & Mason, D. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J. Exp. Med. 189 , 877–882 (1999).

    Article  CAS  Google Scholar 

  13. Lancaster, F., Chui, Y.L. & Batchelor, J.R. Anti-idiotypic T cells suppress rejection of renal allografts in rats. Nature 315, 336– 337 (1985).

    Article  CAS  Google Scholar 

  14. Ierino, F.L., Yamada, K., Hatch, T., Rembert, J. & Sachs, D. Peripheral tolerance to Class I mismatched renal allografts in miniature swine: Donor antigen-activated peripheral blood lymphocytes from tolerant swine inhibit antidonor CTL reactivity. J.Immunol. 162, 550–559 (1999).

    CAS  PubMed  Google Scholar 

  15. Yang, L.M., DuTemple, B., Khan, Q. & Zhang, L. Mechanisms of long-term donor-specific allograft survival induced by pretransplant infusion of lymphocytes . Blood 91, 324–330 (1998).

    CAS  PubMed  Google Scholar 

  16. Yang, L.M., DuTemple, B., Gorczynski, R.M., Levy, G.A. & Zhang,L. Evidence for epitope spreading and active suppression in skin graft tolerance after donor specific transfusion . Transplantation 67, 1404– 1410 (1999).

    Article  CAS  Google Scholar 

  17. Zhang, L., Miller, R.G. & Zhang, J. Characterization of apoptosis-resistant antigen-specific T cells in vivo. J.Exp.Med. 183, 2065– 2073 (1996).

    Article  CAS  Google Scholar 

  18. Sha,W.C. et al. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 336, 73– 76 (1988).

    Article  CAS  Google Scholar 

  19. Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T-cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  CAS  Google Scholar 

  20. Tanchot, C. et al. Modifications of CD8+ T-cell function during in vivo memory or tolerance induction. Immunity 8, 581–590 (1998).

    Article  CAS  Google Scholar 

  21. Sykes, M., Hoyles, K.A., Romick, M.L. & Sachs, D.H. In vitro and in vivo analysis of bone marrow-derived CD3+CD4CD8, NK1.1+ cell lines . Cell. Immunol. 129, 478– 493 (1990).

    Article  CAS  Google Scholar 

  22. Strober, S., Palathumpat, V., Schwadron, R. & Hertel-Wulff, B. Cloned natural suppressor cells prevent lethal graft-vs-host disease. J. Immunol. 138, 699–703 (1987).

    CAS  PubMed  Google Scholar 

  23. Abraham, V.S., Sachs, D.H. & Sykes, M. Mechanism of protection from graft-versus-host disease mortality by IL-2. J. Immunol. 148, 3746 –3752 (1998).

    Google Scholar 

  24. Strober, S. et al. Double negative (CD4CD8 αβ+ T-cells which promote tolerance induction and regulate autoimmunity. Immunol.Rev. 149, 217–230 (1996).

    Article  CAS  Google Scholar 

  25. Erard, F., Wild, M.-T., Garcia-Sanz, J.A. & Le Gross, G. Switch of CD8 T cells to noncytolytic CD8CD4 cells that make Th2 cytokines and help B cells. Science 260, 1802–1805 ( 1993).

    Article  CAS  Google Scholar 

  26. Wahl, S.M. Transforming growth factor beta: the good, the bad, the ugly. J. Exp. Med. 180, 1587–1590 (1994).

    Article  CAS  Google Scholar 

  27. King, C. et al. TGF-β1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 8, 601– 613 (1998).

    Article  CAS  Google Scholar 

  28. Lombardi, G., Sidhu, S., Batchelor, R. & Lechler, R. Anergic T cells as suppressor cells in vitro. Science 264, 1587–1589 (1994).

    Article  CAS  Google Scholar 

  29. Kagi, D. et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528– 530 (1994).

    Article  CAS  Google Scholar 

  30. Khan, Q., Penninger, J.M., Yang, L.M., Marra, L.E.K.I. & Zhang, L. Regulation of apoptosis in mature αβ+ CD4CD8 antigen-specific suppressor T-cell clones. J. Immunol. 162, 5860–5867 (1999).

    CAS  PubMed  Google Scholar 

  31. Thilenius, A.R., Sabelko-Downes, K.A. & Russell, J.H. The role of the antigen-presenting cell in Fas-mediated direct and bystander killing: potential in vivo function of Fas in experimental allergic encephalomyelitis. J. Immunol. 162, 643–650 (1999).

    CAS  PubMed  Google Scholar 

  32. Kuwano, K. & Arai, S. Involvement of two distinct killing mechanisms in bystander target cell lysis induced by a cytotoxic T lymphocyte clone. Cell. Immunol. 169, 288– 293 (1996).

    Article  CAS  Google Scholar 

  33. Smyth, M.J. & Sedgwick, J.D. Delayed kinetics of tumor necrosis factor-mediated bystander lysis by peptide-specific CD8+ cytotoxic T lymphocytes. Eur. J. Immunol. 28, 4162 –4169 (1998).

    Article  CAS  Google Scholar 

  34. Huang, J.F. et al. TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952– 954 (1999).

    Article  CAS  Google Scholar 

  35. Patel, D.M., Arnold, P.Y., White, G.A., Nardella, J.P. & Mannie, M.D. Class II MHC/peptide complexes are released from APC and are acquired by T cell responders during specific antigen recognition. J. Immunol. 163, 5201 –5210 (1999).

    CAS  PubMed  Google Scholar 

  36. Sprent, J. Presidential address to the American Association of Immunologists. Stimulating naive T cells. J. Immunol. 163, 4629– 4636 (1999).

    CAS  PubMed  Google Scholar 

  37. Cai, Z. & Sprent, J. Resting and activated t-cells show different requirements for CD8 molecules. J. Exp. Med. 179, 2005–2015 (1994).

    Article  CAS  Google Scholar 

  38. Sambhara, S.R. & Miller, R.G. Programmed cell death of T cells signaled by the T cell receptor and the α3 domain of Class I MHC. Science 252, 1424– 1427 (1991).

    Article  CAS  Google Scholar 

  39. Matzinger, P. The JAM test. A simple assay for DNA fragmentation and cell death. J. Immunol. Methods 145, 185–192 (1991).

    Article  CAS  Google Scholar 

  40. Ohteki, T. et al. Identification of a cross-reactive self ligand in virus-mediated autoimmunity. Eur. J. Immunol. 29, 2886– 2896 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Ohashi for providing LCMV-gp TCR transgenic mice and p33 peptides, H. Eilson for the 1B2 hybridoma, D.Y. Loh for providing a breeding stock of 2C transgenic mice and J. Chamberlain for providing HY Tg mice. The authors also thank J.M. Penninger, J. H. Russell, R.M. Gorczynski, R.G. Miller and M. Julius for critically reading the manuscript. This work is supported by Medical Research Council of Canada (MT 14431 to LZ) and Leukemia Research Fund of Canada (to L. Zhang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZX., Yang, L., Young, K. et al. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6, 782–789 (2000). https://doi.org/10.1038/77513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing