Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor

Abstract

Although insulin-like growth factor 1 (IGF-1) has been associated with retinopathy, proof of a direct relationship has been lacking. Here we show that an IGF-1 receptor antagonist suppresses retinal neovascularization in vivo, and infer that interactions between IGF-1 and the IGF-1 receptor are necessary for induction of maximal neovascularization by vascular endothelial growth factor (VEGF). IGF-1 receptor regulation of VEGF action is mediated at least in part through control of VEGF activation of p44/42 mitogen-activated protein kinase, establishing a hierarchical relationship between IGF-1 and VEGF receptors. These findings establish an essential role for IGF-1 in angiogenesis and demonstrate a new target for control of retinopathy. They also explain why diabetic retinopathy initially increases with the onset of insulin treatment. IGF-1 levels, low in untreated diabetes, rise with insulin therapy, permitting VEGF-induced retinopathy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The histological effect of IGF-1R inhibition on ischemia-induced retinal neovascularization.
Figure 2: Antagonism of IGF-1R in vivo inhibits ischemia-induced retinal neovascularization in mice.
Figure 3: Western and northern blot analysis of VEGF and VEGF receptors in retinas from IGF-1R-inhibited mice with induced retinal neovascularization.
Figure 4: IGF-1R antagonism in bovine retinal endothelial cells suppresses subsequent VEGF-activation of the MAP kinase pathway.

Similar content being viewed by others

References

  1. Early treatment diabetic retinopathy study research group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology 98, 766–785 (1991).

  2. Zimmer-Galler, I.E., Bressler, N.M. & Bressler, S.B. Treatment of choroidal neovascularization: updated information from recent macular photocoagulation study group reports. Int. Ophthalmol. Clin. 35, 37–57 (1995).

    CAS  PubMed  Google Scholar 

  3. Pierce, E.A., Foley, E.D. & Smith, L.E. Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch. Ophthalmol. 114, 1219–1228 (1996); erratum: 115, 427 (1997).

    Article  CAS  Google Scholar 

  4. Stone, J. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738–4747 (1995).

    Article  CAS  Google Scholar 

  5. Stone, J. et al. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 37, 290–299 (1996).

    CAS  PubMed  Google Scholar 

  6. Pierce, E.A., Avery, R.L., Foley, E.D., Aiello, L.P. & Smith, L.E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. USA 92, 905–909 (1995).

    Article  CAS  Google Scholar 

  7. Boulton, M., Foreman, D., Williams, G. & McLeod, D. VEGF localisation in diabetic retinopathy. Br. J. Ophthalmol. 82, 561–568 (1998).

    Article  CAS  Google Scholar 

  8. Robinson, G.S. et al. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc. Natl. Acad. Sci. USA 93, 4851–4856 (1996).

    Article  CAS  Google Scholar 

  9. Aiello, L.P. et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. USA 92, 10457–10461 (1995).

    Article  CAS  Google Scholar 

  10. Borgstrom, P., Bourdon, M.A., Hillan, K.J., Sriramarao, P. & Ferrara, N. Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 35, 1–10 (1998).

    Article  CAS  Google Scholar 

  11. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Med. 4, 336–340 (1998).

    Article  CAS  Google Scholar 

  12. Smith, L.E. et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 276, 1706–1709 (1997).

    Article  CAS  Google Scholar 

  13. Sharp, P.S. et al. Long-term follow-up of patients who underwent yttrium-90 pituitary implantation for treatment of proliferative diabetic retinopathy. Diabetologia 30, 199–207 (1987).

    Article  CAS  Google Scholar 

  14. Merimee, T.J., Fineberg, S.E., McKusick, V.A. & Hall, J. Diabetes mellitus and sexual ateliotic dwarfism: a comparative study. J. Clin. Invest. 49, 1096–1102 (1970).

    Article  CAS  Google Scholar 

  15. Wright, A.D. et al. Serum growth hormone levels and the response of diabetic retinopathy to pituitary ablation. Br. Med. J. 2, 346–348 (1969).

    Article  CAS  Google Scholar 

  16. Sonksen, P.H., Russell-Jones, D. & Jones, R.H. Growth hormone and diabetes mellitus. A review of sixty-three years of medical research and a glimpse into the future? Horm. Res. 40, 68–79 (1993).

    Article  CAS  Google Scholar 

  17. Merimee, T.J., Zapf, J. & Froesch, E.R. Insulin-like growth factors. Studies in diabetics with and without retinopathy. N. Engl. J. Med. 309, 527–530 (1983).

    Article  CAS  Google Scholar 

  18. Amiel, S.A. et al. Effect of diabetes and its control on insulin-like growth factors in the young subject with type I diabetes. Diabetes 33, 1175–1179 (1984).

    Article  CAS  Google Scholar 

  19. Grant, M., Russell, B., Fitzgerald, C. & Merimee, T.J. Insulin-like growth factors in vitreous. Studies in control and diabetic subjects with neovascularization. Diabetes 35, 416–420 (1986).

    Article  CAS  Google Scholar 

  20. Pfeiffer, A., Spranger, J., Meyer-Schwickerath, R. & Schatz, H. Growth factor alterations in advanced diabetic retinopathy: a possible role of blood retina barrier breakdown. Diabetes 46, S26–30 (1997).

    Article  CAS  Google Scholar 

  21. Meyer-Schwickerath, R. et al. Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J. Clin. Invest. 92, 2620–2625 (1993).

    Article  CAS  Google Scholar 

  22. Hyer, S.L., Sharp, P.S., Brooks, R.A., Burrin, J.M. & Kohner, E.M. A two-year follow-up study of serum insulinlike growth factor-I in diabetics with retinopathy. Metabolism 38, 586–589 (1989).

    Article  CAS  Google Scholar 

  23. Dills, D.G., Moss, S.E., Klein, R., Klein, B.E. & Davis, M. Is insulinlike growth factor I associated with diabetic retinopathy? Diabetes 39, 191–195 (1990).

    Article  CAS  Google Scholar 

  24. Dills, D.G., Moss, S.E., Klein, R. & Klein, B.E. Association of elevated IGF-I levels with increased retinopathy in late-onset diabetes. Diabetes 40, 1725–1730 (1991).

    Article  CAS  Google Scholar 

  25. Smith, L.E. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).

    CAS  PubMed  Google Scholar 

  26. Hayry, P. et al. Stabile D-peptide analog of insulin-like growth factor-1 inhibits smooth muscle cell proliferation after carotid ballooning injury in the rat. FASEB J. 9, 1336–1344 (1995).

    Article  CAS  Google Scholar 

  27. Pietrzkowski, Z., Wernicke, D., Porcu, P., Jameson, B.A. & Baserga, R. Inhibition of cellular proliferation by peptide analogues of insulin-like growth factor 1. Cancer Res. 52, 6447–6451 (1992).

    CAS  PubMed  Google Scholar 

  28. Kroll, J. & Waltenberger, J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J. Biol. Chem. 272, 32521–32527 (1997).

    Article  CAS  Google Scholar 

  29. Pedram, A., Razandi, M., Hu, R.M. & Levin, E.R. Astrocyte progression from G1 to S phase of the cell cycle depends upon multiple protein interaction. J. Biol. Chem. 273, 13966–13972 (1998).

    Article  CAS  Google Scholar 

  30. Abedi, H. & Zachary, I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol.Chem. 272, 15442–15451 (1997).

    Article  CAS  Google Scholar 

  31. Parenti, A. et al. Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase1/2 activation in postcapillary endothelium. J. Biol. Chem. 273, 4220–4226 (1998).

    Article  CAS  Google Scholar 

  32. Seger, R. & Krebs, E.G. The MAPK signaling cascade. Faseb. J. 9, 726–735 (1995).

    Article  CAS  Google Scholar 

  33. Pedram, A., Razandi, M., Hu, R.M. & Levin, E.R. Vasoactive peptides modulate vascular endothelial cell growth factor production and endothelial cell proliferation and invasion. J. Biol. Chem. 272, 17097–17103 (1997).

    Article  CAS  Google Scholar 

  34. Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T. & Saltiel, A.R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270, 27489–27494 (1995).

    Article  CAS  Google Scholar 

  35. Baserga, R., Hongo, A., Rubini, M., Prisco, M. & Valentinis, B. The IGF-I receptor in cell growth, transformation and apoptosis. Biochim. Biophys. Acta 1332, F105–126 (1997).

    CAS  PubMed  Google Scholar 

  36. King, G.L., Goodman, A.D., Buzney, S., Moses, A. & Kahn, C.R. Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta. J. Clin. Invest. 75, 1028–1036 (1985).

    Article  CAS  Google Scholar 

  37. Grant, M.B., Caballero, S. & Millard, W.J. Inhibition of IGF-I and b-FGF stimulated growth of human retinal endothelial cells by the somatostatin analogue, octreotide: a potential treatment for ocular neovascularization. Regul. Pept. 48, 267–278 (1993).

    Article  CAS  Google Scholar 

  38. Graves, J.D., Campbell, J.S. & Krebs, E.G. Protein serine/threonine kinases of the MAPK cascade. Ann. NY Acad. Sci. 766, 320–343 (1995).

    Article  CAS  Google Scholar 

  39. Klemke, R.L. et al. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137, 481–492 (1997).

    Article  CAS  Google Scholar 

  40. Punglia, R.S. et al. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I. Diabetes 46, 1619–1626 (1997).

    Article  CAS  Google Scholar 

  41. The diabetes control and complications trial. The effect of intensive diabetes treatment on the progression of diabetic retinopathy in insulin-dependent diabetes mellitus. Arch Ophthalmol. 113, 36–51 (1995).

  42. Dahl-Jorgensen, K., Brinchmann-Hansen, O., Hanssen, K.F., Sandvik, L. & Aagenaes, O. Rapid tightening of blood glucose control leads to transient deterioration of retinopathy in insulin dependent diabetes mellitus: the Oslo study. Br. Med. J. (Clin. Res. Ed.) 290, 811–815 (1985).

    Article  CAS  Google Scholar 

  43. Chantelau, E. & Kohner, E.M. Why some cases of retinopathy worsen when diabetic control improves. Br. Med. J. 315, 1105–1106 (1997).

    Article  CAS  Google Scholar 

  44. Hanssen, K.F., Dahl-Jorgensen, K. & Brinchmann-Hansen, O. The influence of strict control on diabetic complications. Acta Endocrinol. Suppl. (Copenh) 272, 57–60 (1985).

    Article  CAS  Google Scholar 

  45. Diabetes control and complications trial research group. Progression of retinopathy with intensive versus conventional treatment in the diabetes control and complications trial. Ophthalmology 102, 647–661 (1995).

  46. Diabetes control and complications trial research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  47. Moskalets, E., Galstyan, G., Starostina, E., Antsiferov, M. & Chantelau, E. Association of blindness to intensification of glycemic control in insulin-dependent diabetes mellitus. J. Diabetes Complications 8, 45–50 (1994).

    Article  CAS  Google Scholar 

  48. Chantelau, E., Eggert, H., Seppel, T., Schonau, E. & Althaus, C. Elevation of serum IGF-1 precedes proliferative diabetic retinopathy in Mauriac's syndrome. Br. J. Ophthalmol. 81, 169–170 (1997).

    Article  CAS  Google Scholar 

  49. Hammes, H.P., Lin, J., Bretzel, R.G., Brownlee, M. & Breier, G. Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 47, 401–406 (1998).

    Article  CAS  Google Scholar 

  50. Holly, J.M., Amiel, S.A., Sandhu, R.R., Rees, L.H. & Wass, J.A. The role of growth hormone in diabetes mellitus. J. Endocrinol. 118, 353–364 (1988).

    Article  CAS  Google Scholar 

  51. D'Amato, R., Wesolowski, E. & Smith, L.E. Microscopic visualization of the retina by angiography with high-molecular-weight fluorescein-labeled dextrans in the mouse. Microvasc. Res. 46, 135–142 (1993).

    Article  CAS  Google Scholar 

  52. Capetandes, A. & Gerritsen, M.E. Simplified methods for consistent and selective culture of bovine retinal endothelial cells and pericytes. Invest. Ophthalmol. Vis. Sci. 31, 1738–1744 (1990).

    CAS  PubMed  Google Scholar 

  53. Bischoff, J., Brasel, C., Kraling, B. & Vranovska, K. E-selectin is upregulated in proliferating endothelial cells in vitro. Microcirculation 4, 279–287 (1997).

    Article  CAS  Google Scholar 

  54. Zhang, B., Tavare, J.M., Ellis, L. & Roth, R.A. The regulatory role of known tyrosine autophosphorylation sites of the insulin receptor kinase domain. An assessment by replacement with neutral and negatively charged amino acids. J. Biol. Chem. 266, 990–996 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Sullivan for assistance. This work was supported in part by grants from the V. Kann Rasmussen Foundation and the National Eye Institute (EY08670) to L.E.H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois E. H. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, L., Shen, W., Perruzzi, C. et al. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med 5, 1390–1395 (1999). https://doi.org/10.1038/70963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing