Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Growing tissues in microgravity

Abstract

The possibility of creating three-dimensional differentiated tissue-like assemblies by culturing cells in microgravity, either in space or on the ground, offers research opportunities that may lead to the generation of replacement organs for transplantation, and for studying multicellular responses in toxicology, radiation biology, tumorigenesis, and embryogenesis. Here, Brian Unsworth and Peter Lelkes review these opportunities, considering the practical and theoretical challenges of the microgravity environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoffman, R.M. The three-dimensional question: can clinically relevant tumor drug resistance be measured in vitro? Cancer Metast. Rev. 13, 169–173 (1994).

    Article  CAS  Google Scholar 

  2. Hoffman, R.M. To do tissue culture in two or three dimensions? That is the question. Stem Cells 11, 105–111 (1993).

    Article  CAS  Google Scholar 

  3. Schwachöfer, J.H. Multicellular tumor spheroids in radiotherapy research (review). Anticancer Res. 10, 963–969 (1990).

    PubMed  Google Scholar 

  4. Kerbel, R.S., Kobayashi, H. & Graham, C.H. Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes: J. Cell. Biochem. 56, 37–47 (1994).

    Article  CAS  Google Scholar 

  5. St Croix, B. & Kerbel, R.S. Cell adhesion and drug resistance in cancer. Curr. Opin. Oncol. 9, 549–556 (1997).

    Article  CAS  Google Scholar 

  6. Schuster, U., Büttner, R., Hofstädter, F. & Knüchel, R. A heterologous in vitro coculture system to study interaction between human bladder cancer cells and fibroblasts. J. Virol. 151, 1707–1711 (1994).

    CAS  Google Scholar 

  7. Sutherland, R.M. et al. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 46, 5320–5329 (1986).

    CAS  Google Scholar 

  8. Langer, R. & Vacanti, J.P. Tissue engineering. Science 260, 920–926 (1993).

    Article  CAS  Google Scholar 

  9. Cima, L.G. et al. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech. Eng. 113, 143–151 (1991).

    Article  CAS  Google Scholar 

  10. Langer, R. & Vacanti, J.P. Artificial Organs. Sci. Am. 273, 130–133 (1995).

    CAS  PubMed  Google Scholar 

  11. Shinoka, T. et al. Tissue-engineered heart valve leaflets - Does cell origin affect outcome? Circulation 96, 102–107 (1997).

    Google Scholar 

  12. Shinoka, T. et al. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 115, 536–545 (1998).

    Article  CAS  Google Scholar 

  13. Niklason, L.E. & Langer, R.S. Advances in tissue engineering of blood vessels and other tissues. Transpl. Immunol. 5, 303–306 (1997).

    Article  CAS  Google Scholar 

  14. Mayer, J.E., Jr., Shin'oka, T. & Shum-Tim, D. Tissue engineering of cardiovascular structures. Curr. Opin. Cardiol. 12, 528–532 (1997).

    Article  Google Scholar 

  15. Dai, W., Belt, J. & Saltzman, W.M. Cell-binding peptides conjugated to poly(ethylene gtycol) promote neural cell aggregation. Bio/Technology 12, 797–801 (1994).

    CAS  PubMed  Google Scholar 

  16. Krewson, C.E. & Saltzman, W.M. Nerve growth factor delivery and cell aggregation enhance choline acetyltransferase activity after neural transplantation. Tissue Engineering 2, 183–196 (1996).

    Article  CAS  Google Scholar 

  17. Atala, A. Tissue engineering in urologic surgery. Urol. Clin. North Am. 25, 39–50 (1998).

    Article  CAS  Google Scholar 

  18. Fauza, D.O., Fishman, S.J., Mehegan, K. & Atala, A. Videofetoscopically assisted fetal tissue engineering: skin replacement. J. Pediatr. Surg. 33, 357–361 (1998).

    Article  CAS  Google Scholar 

  19. Moreira, J.L. et al. Effect of viscosity upon hydrodynamically controlled natural aggregates of animal cells grown in stirred vessels. Biotechnol. Prog. 11, 575–583 (1995).

    Article  CAS  Google Scholar 

  20. Freed, L.E. & Vunjak-Novakovic, G. in Principles of tissue engineering (eds Lanza, R.P., Langer, R. & Chick, W.L.) 151–165 (Academic Press, Austin, 1997).

    Google Scholar 

  21. Hymer, W.C. et al. Feeding frequency affects cultured rat pituitary cells in low gravity. J. Biotechnol. 47, 289–312 (1996).

    Article  CAS  Google Scholar 

  22. Dintenfass, L. Execution of “ARC” experiment on space shuttle “Discovery” STS 51-C: some results on aggregation of red blood cells under zero gravity. Biorheology 23, 331–347 (1986).

    Article  CAS  Google Scholar 

  23. Wolf, D.A. & Schwarz, R.P. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel. NASA Technical Paper 3143, 1–12 (1991).

    Google Scholar 

  24. Schwarz, R.P., Goodwin, T.J. & Wolf, D.A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tiss. Cult. Meth. 14, 51–58 (1992).

    Article  CAS  Google Scholar 

  25. Jessup, J.M., Goodwin, T.J. & Spaulding, G. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51, 290–300 (1993).

    Article  CAS  Google Scholar 

  26. Galvan, D.L., Unsworth, B.R., Goodwin, T.J., Liu, J. & Lelkes, P.I. Microgravity enhances tissue-specific neuroendocrine differentiation in cocultures of rat adrenal medullary parenchymal and endothelial cells. In Vitro Cell. Dev. Biol. Anim. 31, 10A (1995).

    Google Scholar 

  27. Resnick, N. & Gimbrone, M.A., Jr. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9, 874–882 (1995).

    Article  CAS  Google Scholar 

  28. Ziegler, T. & Nerem, R.M. Tissue engineering a blood vessel: regulation of vascular biology by mechanical stresses. J. Cell. Biochem. 56, 204–209 (1994).

    Article  CAS  Google Scholar 

  29. Galvan, D.L., Liu, J., Wankowski, D.M., Lelkes, P.I. & Unsworth, B.R. Differential modulation of extracellular matrix protein expression in adrenal medullary cells cultured under simulated microgravity conditions. Mol. Biol. Cell Nov. 6S, 975 (1995).(Abstract)

  30. Goodwin, T.J., Schroeder, W.F., Wolf, D.A. & Moyer, M.P. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202, 181–192 (1993).

    Article  CAS  Google Scholar 

  31. Freed, L.E., Vunjak-Novakovic, G. & Langer, R. Cultivation of cell-polymer cartilage implants in bioreactors. J. Cell. Biochem. 51, 257–264 (1993).

    Article  CAS  Google Scholar 

  32. Becker, J.L., Prewett, T.L., Spaulding, C.F. & Goodwin, T.J. Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: morphologic and embryologic considerations. J. Cell. Biochem. 51, 283–289 (1993).

    Article  CAS  Google Scholar 

  33. Ingram, M. et al. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol. Anim. 33, 459–466 (1997).

    Article  CAS  Google Scholar 

  34. Jessup, J.M. et al. Induction of cardinoembryonic antigen expression in a three-dimensional culture system. In Vitro Cell. Dev. Biol. Anim. 33, 352–357 (1997).

    Article  CAS  Google Scholar 

  35. Becker, J.L., Papenhausen, P.R. & Widen, R.H. Cytogenetic, morphologic and oncogene analysis of a cell line derived from a heterologous mixed mullerian tumor of the ovary. In Vitro Cell. Dev. Biol. Anim. 33, 325–331 (1997).

    Article  CAS  Google Scholar 

  36. Freed, L.E. et al. Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 240, 58–65 (1998).

    Article  CAS  Google Scholar 

  37. Margolis, L.B. et al. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor. AIDS Res. Hum. Retroviruses 13, 1411–1420 (1997).

    Article  CAS  Google Scholar 

  38. Long, J.P., Pierson, S. & Hughes, J.H. Rhinovirus replication in Hela cells cultured under conditions of simulated microgravity. Aviat. Space Environ. Med. (in the press).

  39. Freed, L.E. & Vunjak-Novakovic, G. Microgravity tissue engineering. In Vitro Cell. Dev. Biol. Anim. 33, 381–385 (1997).

    Article  CAS  Google Scholar 

  40. Francis, K.M., O'Connor, K.C. & Spaulding, G.F. Cultivation of fall armyworm ovary cells in simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 33, 332–336 (1997).

    Article  CAS  Google Scholar 

  41. Khaoustov, V.I., Darlington, G.J., Soriano, H.E. et al. Establishment of three dimensional primary hepatocyte cultures in microgravity environment. Hepatology 22, 231A (1995).

    Article  Google Scholar 

  42. Goodwin, T.J., Prewett, T.L., Spaulding, G.F. & Becker, J.L. Three-dimensional culture of a mixed mullerian tumor of the ovary: expression of in vivo characteristics. In Vitro Cell. Dev. Biol. Anim. 33, 366–374 (1997).

    Article  CAS  Google Scholar 

  43. Zhau, H.E., Goodwin, T.J., Chang, S.-M., Baker, T.L. & Chung, L.W.K. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: Evaluation of androgen-induced growth and PSA expression. In Vitro Cell. Dev. Biol. Anim. 33, 375–380 (1997).

    Article  CAS  Google Scholar 

  44. Rhee, H.-W., Chang, S.-M., Gardner, T.A. & Chung, L.W.K. Three-dimensional (3-D) human prostate organoid culture to study cell-cell and cell-matrix interaction: irreversible alterations of prostate epithelial tumorigenicity, growth responsiveness to androgen and estrogen, and growth factors in culture. J. Virol. 159, 5 (1998).

    Google Scholar 

  45. Hammond, T.G., Galvan, D.L., Goodwin, T.J. & Lelkes, P.I. Human renal epithelial cells in culture differentiate under simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 31, 9A (1995).

    Google Scholar 

  46. Folkman, J. Tumor angiogenesis. Adv. Cancer Res. 43, 175–203 (1985).

    Article  CAS  Google Scholar 

  47. Chopra, V., Dinh, T.V. & Hannigan, E.V. Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. In Vitro Cell. Dev. Biol. Anim. 33, 432–442 (1998).

    Article  Google Scholar 

  48. Montgomery, P.O. et al. The response of single human cells to zero gravity. In Vitro Cell. Dev. Biol. 14, 165–173 (1978).

    Article  CAS  Google Scholar 

  49. Claassen, D.E. & Spooner, B.S. Impact of altered gravity on aspects of cell biology. Int. Rev. Cytol. 156, 301–373 (1994).

    Article  CAS  Google Scholar 

  50. Cogoli, A. & Cogoli-Greuter, M. in Advances in space biology and medicine 33–79 (JAI Press Inc. 1998).

    Google Scholar 

  51. Hughes-Fulford, M. & Lewis, M.L. Effects of microgravity on osteoblast growth activation. Exp. Cell Res. 224, 103–109 (1996).

    Article  CAS  Google Scholar 

  52. Ingber, D.E. Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).

    Article  CAS  Google Scholar 

  53. Schmitt, D.A. et al. The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J. 10, 1627–1634 (1996).

    Article  CAS  Google Scholar 

  54. Cogoli-Greuter, M. et al. Movements and interactions of leukocytes in micro-gravity. J. Biotechnol. 47, 279–287 (1996).

    Article  CAS  Google Scholar 

  55. Pellis, N.R. et al. Changes in gravity inhibit lymphocyte locomotion through Type I collagen. In Vitro Cell. Dev. Biol. Anim. 33, 398–405 (1997).

    Article  CAS  Google Scholar 

  56. Cooper, D. & Pellis, N.R. Suppressed PHA activation of T lymphocytes in simualted micrgravity is restored by direct activation of protein kinase C. J. Leukocyte Biol. 63, 550–562 (1998).

    Article  CAS  Google Scholar 

  57. Vens, C., Kump, B., Münstermann, B. & Heinlein, U.A.O. The C5 unit: a semiautomatic cell culture device suitable for experiments under microgravity. J. Biotechnol. 47, 203–214 (1996).

    Article  CAS  Google Scholar 

  58. Cogoli, A. & Gmunder, F.K. Gravity effects on single cells: techniques, findings, and theory. Advances in Space Biology and Medicine 1, 183–248 (1991).

    Article  CAS  Google Scholar 

  59. Lorenzi, G., Gmunder, F.K., Nordau, C.G. & Cogoli, A. in BIORACK on Spacelab IML (ed Mattok, C.) 105–112 (Noordwijk, 1995).

    Google Scholar 

  60. Walther, I. et al. Development of a miniture bioreactor for continuous culture in a space laboratory. J. Biotechnol. 38, 21–32 (1994).

    Article  CAS  Google Scholar 

  61. Guignandon, A. et al. Demonstration of feasibility of automated osteoblastic line culture in space flight. Bone 20, 109–116 (1997).

    Article  CAS  Google Scholar 

  62. Seitzer, U., Bodo, M., Muller, P.K., Acil, Y. & Batge, B. Microgravity and hyper-gravity effects on collagen biosynthesis of human dermal fibroblasts. Cell Tissue Res. 282, 513–517 (1995).

    Article  CAS  Google Scholar 

  63. Backup, P. et al. Space flight results in reduced mRNA levels for tissue specific protein in the musculoskeletal system. Am. J. Physiol. 266, E567–E573 (1994).

    CAS  PubMed  Google Scholar 

  64. Freed, L.E., Langer, R., Martin, I., Pellis, N.R. & Vunjak-Novakovic, G. Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 94, 13885–13890 (1997).

    Article  CAS  Google Scholar 

  65. Bonting, S.L. Advances in space biology and medicine, Volume 2 (JAI Press Inc. Greenwich, 1992).

    Google Scholar 

  66. Jessup, J.M., Goodwin, T.J., Garcia, R. & Pellis, N. STS-70:First flight of EDU-1. In Vitro Cell. Dev. Biol. Anim. 32, 13A (1996).

    Article  Google Scholar 

  67. Lelkes, P.I. et al. Simulated microgravity conditions enhance differentiation of cultured PCI 2 cells towards the neuroendocrine phenotype. In Vitro Cell. Dev. Biol. Anim. 34, 316–324 (1998).

    Article  CAS  Google Scholar 

  68. Saltzman, W.M. Weaving cartilage at zero g: the reality of tissue engineering in space. Proc. Natl. Acad. Sci. USA 94, 13380–13382 (1997).

    Article  CAS  Google Scholar 

  69. Tjandrawinata, R.R., Vincent, V.L. & Hughes-Fulford, M. Vibrational force alters mRNA expression in osteoblasts. FASEB J. 11, 493–497 (1997).

    Article  CAS  Google Scholar 

  70. Horneck, G. et al. The influence of microgravity on repair of radiation-induced DNA damage in bacteria and human fibroblasts. Radiat. Res. 147, 376–384 (1997).

    Article  CAS  Google Scholar 

  71. Pippia, P. et al. Activation signals of T lymphocytes in microgravity. J. Biotechnol. 47, 215–222 (1996).

    Article  CAS  Google Scholar 

  72. Kulesh, D.A. et al. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant. J. Cell. Biochem. 55, 530–544 (1994).

    Article  CAS  Google Scholar 

  73. Akins, R.E., Schroedl, N.A., Gonda, S.R. & Hartzell, C.R. Neonatal rat heart cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 33, 337–343 (1997).

    Article  CAS  Google Scholar 

  74. Molnar, G., Schroedl, N.A., Gonda, S.R. & Hartzell, C.R. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 33, 386–391 (1997).

    Article  CAS  Google Scholar 

  75. Torgan, C.E., Burge, S.S., Collinsworth, A.M., Truskey, G.A. & Kraus, W.E. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating wall vessel. In Vitro Cell. Dev. Biol. Anim. (1998).(in press)

  76. O'Connor, K.C., Enmon, R.M., Dotson, R.S., Primavera, A.C. & Clejan, S. Characterization of autocrine growth factors, their receptors and extracellular matrix present in three-dimensional cultures of DU 145 human prostate carcinoma cells grown in simulated microgravity. Tissue Engineering 3, 161–171 (1997).

    Article  CAS  Google Scholar 

  77. Kunisada, T., Kawal, A., Inoue, H. & Namba, M. Effects of simulated micro-gravity on human osteoblast-like cells in culture. Acta Med Okayama 51, 135–140 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unsworth, B., Lelkes, P. Growing tissues in microgravity. Nat Med 4, 901–907 (1998). https://doi.org/10.1038/nm0898-901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing