Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction

Abstract

Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (ł50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elevation of glucose metabolic enzymes in glomeruli from individual with diabetes, but without DN.
Figure 2: Regulation of PKM2 activity by high glucose and diabetes.
Figure 3: Pkm2 deletion in podocytes accelerates DN progression.
Figure 4: PKM2 activation normalizes abnormalities in glucose metabolism and mitochondrial function and prevents podocyte apoptosis induced by high glucose.
Figure 5: PKM2 activation reverses diabetes-induced defects in glucose metabolism and mitochondrial function in a mouse model of DN.
Figure 6: Pharmacologically activating PKM2 by TEPP-46 prevents the development of glomerular pathology.

Similar content being viewed by others

References

  1. Breyer, M.D. & Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov. 15, 568–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khan, S.S. & Quaggin, S.E. Therapies on the horizon for diabetic kidney disease. Curr. Diab. Rep. 15, 111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. United States Renal Data System. 2015 USRDS Annual Data Report (USRDS, 2015).

  4. Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615–1625 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Dunlop, M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. Suppl. 77, S3–S12 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Giacco, F. et al. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes 63, 291–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Greene, D.A., Lattimer, S.A. & Sima, A.A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N. Engl. J. Med. 316, 599–606 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, T.S., Saltsman, K.A., Ohashi, H. & King, G.L. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc. Natl. Acad. Sci. USA 86, 5141–5145 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reidy, K., Kang, H.M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333–2340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reddy, M.A. & Natarajan, R. Epigenetics in diabetic kidney disease. J. Am. Soc. Nephrol. 22, 2182–2185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fogo, A.B. The targeted podocyte. J. Clin. Invest. 121, 2142–2145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, W. et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 15, 186–200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bolton, W.K. et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol. 24, 32–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Frank, R.N. The aldose reductase controversy. Diabetes 43, 169–172 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial. Diabetes 54, 2188–2197 (2005).

  17. Pergola, P.E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Keenan, H.A. et al. Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study. Diabetes Care 30, 1995–1997 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, J.K. et al. Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration: the joslin 50-year medalist study. Diabetes Care 34, 968–974 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tervaert, T.W. et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556–563 (2010).

    Article  PubMed  Google Scholar 

  21. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kung, C. et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakatsu, D. et al. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2. Proc. Natl. Acad. Sci. USA 112, E1067–E1076 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palsson-McDermott, E.M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geraldes, P. et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 15, 1298–1306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khamaisi, M. et al. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J. Clin. Invest. 126, 837–853 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mima, A. et al. Glomerular VEGF resistance induced by PKCδ/SHP-1 activation and contribution to diabetic nephropathy. FASEB J. 26, 2963–2974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Israelsen, W.J. et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Varanita, T. et al. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 21, 834–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanetsuna, Y. et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am. J. Pathol. 170, 1473–1484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakagawa, T. et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18, 539–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Sharma, K. Mitochondrial hormesis and diabetic complications. Diabetes 64, 663–672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma, K. et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang, H.M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Dugan, L.L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Susztak, K. Understanding the epigenetic syntax for the genetic alphabet in the kidney. J. Am. Soc. Nephrol. 25, 10–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Lunt, S.Y. et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Dayton, T.L. et al. Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1020–1033 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, W. & Lu, Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle 12, 3154–3158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, W. et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480, 118–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M. & Cantley, L.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hitosugi, T. et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Breyer, M.D. et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 16, 27–45 (2005).

    Article  PubMed  Google Scholar 

  47. Brosius, F.C. III et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2503–2512 (2009).

    Article  PubMed  Google Scholar 

  48. Qi, Z. et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54, 2628–2637 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi, T. & Harris, R.C. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice. J. Diabetes Res. 2014, 590541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao, B.B., Stuart, L. & Feener, E.P. Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol. Cell. Proteomics 7, 2399–2409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Niewczas, M.A. et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol. 23, 507–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sakairi, T. et al. Conditionally immortalized human podocyte cell lines established from urine. Am. J. Physiol. Renal Physiol. 298, F557–F567 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Shankland, S.J., Pippin, J.W., Reiser, J. & Mundel, P. Podocytes in culture: past, present, and future. Kidney Int. 72, 26–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Coppey, L.J. et al. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50, 1927–1937 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Inoguchi, T. et al. Insulin's effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am. J. Physiol. 267, E369–E379 (1994).

    CAS  PubMed  Google Scholar 

  57. Massart, J., Zierath, J.R. & Chibalin, A.V. A simple and rapid method to characterize lipid fate in skeletal muscle. BMC Res. Notes 7, 391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, J.M. et al. Isomer-specific regulation of metabolism and PPAR signaling by CLA in human preadipocytes. J. Lipid Res. 44, 1287–1300 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Nemet, I., Varga-Defterdarovic´, L. & Turk, Z. Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography. Clin. Biochem. 37, 875–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Sweetwyne, M.T. et al. Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes 64, 4099–4111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takemoto, M. et al. A new method for large scale isolation of kidney glomeruli from mice. Am. J. Pathol. 161, 799–805 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Advani, A. et al. Expression, localization, and function of the thioredoxin system in diabetic nephropathy. J. Am. Soc. Nephrol. 20, 730–741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med. 13, 1349–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Ma, L.J. et al. Divergent effects of low versus high dose anti-TGF-β antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int. 65, 106–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, H.J. et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J. Am. Soc. Nephrol. 17, 2664–2669 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Pisania, A. et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab. Invest. 90, 1661–1675 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all the fellows who participated in Medalist Kidneys collection, D. Anastasiou, J. Lee, C. Thomas and M. Lauterbach for their technical advice. We also thank the technical support from E. Yu, daily-oral-gavaging team members, Z. Zsengeller and E. Pernicone. We are grateful to M. Maurer, who gave us technical advice on human kidney pathology assessment. We thank C. Clish for plasma metabolomics analysis. We are grateful to J. Hourihan for technical advice and review of the manuscript. W. Qi was a recipient of awards from the Juvenile Diabetes Research Foundation and Mary Iacocca Research Foundation. Mouse podocytes and human podocytes cell lines were kind gifts from P.M. and J.K. This project was funded by NIH 1DP3DK112192-01 (G.L.K.); DK094333-01 (G.L.K. and H.A.K.), 1R24DK090961-01 (G.L.K.); DRC grant-P30DK036836-30 (G.L.K.); JDRF 8-2005-358 (G.L.K.); JDRF 18-2008-363 (G.L.K.); JDRF17-2011-47 (G.L.K.); and JDRF17-2013-310 (H.A.K.). Additional research support was provided by the Thomas Beatson, Jr Foundation, the Brehm Foundation and a research grant from Sanofi-Aventis (G.L.K.). Other co-authors were supported by the following funding: DK107339-02 (M.A.Y.); Harold Whitworth Pierce Charitable Trust Postdoctoral Fellowship (A.M.B.); R01 DK109015 and R00 DK090210 (C.W.L.) and JDRF CDA-2015-89-A-B (M.A.N.).

Author information

Authors and Affiliations

Authors

Contributions

W.Q. designed and performed the experiments, analyzed the data and wrote the manuscript. H.A.K. assisted in the design of the Medalist study. Q.L., A.I., A.K., T.S., M.A.Y., S.L., L.J.C., A.P., C.W.L., G.Q., A.M.B. and W.J.I. provided technical support and/or critical discussions of the manuscript. I.-H.W. analyzed proteomics data. S.H. managed clinical data and samples. D.P. and L.T. performed all the clinical and some nonclinical statistical analysis and checked all the statistical analysis. C.C. performed electron-microscopy-related imaging work. M.A.N. analyzed metabolomics data. E.P.F. participated in proteomics analysis and critical review and discussion of the manuscript. M.G.V.H. provided technical advice on both TEPP-46 and Pkm2fl/fl mouse studies and constructs of pLHCX-Flag-mPKM2 and pLHCXFlag-mPKM1. I.E.S. and P.S.A. assessed all the human kidney pathology. R.C.S. provided critical review of the clinical data. G.L.K. supervised the project and wrote the manuscript. All the authors have reviewed the manuscript.

Corresponding author

Correspondence to George L King.

Ethics declarations

Competing interests

A.K., T.S. and A.P. are employees of Sanofi-Aventis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12; Supplementary Figures 13–21 (Uncropped Western Blots); Supplementary Tables 1–14 (PDF 3853 kb)

Dataset

Raw Data (XLSX 260 kb)

Supplementary Methods

Supplementary Methods (PDF 265 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Keenan, H., Li, Q. et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 23, 753–762 (2017). https://doi.org/10.1038/nm.4328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing