Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4

Abstract

Non-alcoholic steatohepatitis (NASH) is an increasingly prevalent liver pathology that can progress from non-alcoholic fatty liver disease (NAFLD), and it is a leading cause of cirrhosis and hepatocellular carcinoma. There is currently no pharmacological therapy for NASH. Defective lysosome-mediated protein degradation is a key process that underlies steatohepatitis and a well-recognized drug target in a variety of diseases; however, whether it can serve as a therapeutic target for NAFLD and NASH remains unknown. Here we report that transmembrane BAX inhibitor motif-containing 1 (TMBIM1) is an effective suppressor of steatohepatitis and a previously unknown regulator of the multivesicular body (MVB)-lysosomal pathway. Tmbim1 expression in hepatocytes substantially inhibited high-fat diet–induced insulin resistance, hepatic steatosis and inflammation in mice. Mechanistically, Tmbim1 promoted the lysosomal degradation of toll-like receptor 4 by cooperating with the ESCRT endosomal sorting complex to facilitate MVB formation, and the ubiquitination of Tmbim1 by the E3 ubiquitin ligase Nedd4l was required for this process. We also found that overexpression of Tmbim1 in the liver effectively inhibited a severe form of NAFLD in mice and NASH progression in monkeys. Taken together, these findings could lead to the development of promising strategies to treat NASH by targeting MVB regulators to properly orchestrate the lysosome-mediated protein degradation of key mediators of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation of Tmbim1 expression with fatty liver diseases.
Figure 2: Tmbim1 deletion exacerbates insulin resistance, hepatic steatosis and inflammation.
Figure 3: Tlr4 signaling is required for Tmbim1 function.
Figure 4: TMBIM1 promotes the lysosomal degradation of TLR4 by facilitating MVB formation.
Figure 5: The physiological function of Tmbim1 is dependent on its ubiquitination.
Figure 6: TMBIM1 ameliorates metabolic syndromes and hepatic steatosis in monkeys.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Wree, A., Broderick, L., Canbay, A., Hoffman, H.M. & Feldstein, A.E. From NAFLD to NASH to cirrhosis—new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 10, 627–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Younossi, Z.M. et al. Global epidemiology of non-alcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  3. Cohen, J.C., Horton, J.D. & Hobbs, H.H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Byrne, C.D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62 (Suppl. 1), S47–S64 (2015).

    Article  PubMed  Google Scholar 

  5. LaBrecque, D.R. et al. World Gastroenterology Organization global guidelines: non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. J. Clin. Gastroenterol. 48, 467–473 (2014).

    Article  PubMed  Google Scholar 

  6. Haas, J.T., Francque, S. & Staels, B. Pathophysiology and mechanisms of non-alcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H.J. et al. Effects of moderate and vigorous exercise on non-alcoholic fatty liver disease: a randomized clinical trial. JAMA Intern. Med. 176, 1074–1082 (2016).

    Article  PubMed  Google Scholar 

  8. Noureddin, M., Zhang, A. & Loomba, R. Promising therapies for treatment of non-alcoholic steatohepatitis. Expert Opin. Emerg. Drugs 21, 343–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ye, D. et al. Toll-like receptor 4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein 1 in mice. Gut 61, 1058–1067 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Husebye, H. et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 25, 683–692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scita, G. & Di Fiore, P.P. The endocytic matrix. Nature 463, 464–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Hanson, P.I. & Cashikar, A. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 28, 337–362 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Ciechanover, A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ. 12, 1178–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, H. & Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 77, 57–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, H. et al. RECS1 deficiency in mice induces susceptibility to cystic medial degeneration. Genes Genet. Syst. 81, 41–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Shukla, S. et al. A shear-stress-responsive gene product PP1201 protects against Fas-mediated apoptosis by reducing Fas expression on the cell surface. Apoptosis 16, 162–173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lisak, D.A. et al. The transmembrane Bax inhibitor motif (TMBIM)-containing protein family: tissue expression, intracellular localization and effects on the ER Ca2+-filling state. Biochim. Biophys. Acta 1853, 2104–2114 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, H. et al. RECS1 is a negative regulator of matrix metalloproteinase 9 production and aged RECS1-knockout mice are prone to aortic dilation. Circ. J. 70, 615–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Malhi, H., Guicciardi, M.E. & Gores, G.J. Hepatocyte death: a clear and present danger. Physiol. Rev. 90, 1165–1194 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Song, C.Y. et al. Sophocarpine attenuates Toll-like receptor 4 in steatotic hepatocytes to suppress pro-inflammatory cytokines synthesis. J. Gastroenterol. Hepatol. 30, 405–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 110, 962–971 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Palsson-McDermott, E.M. et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat. Immunol. 10, 579–586 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Vespasiani-Gentilucci, U. et al. Hepatic Toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int. 35, 569–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, R.N. et al. Saturated fatty acid inhibits viral replication in chronic hepatitis B virus infection with non-alcoholic fatty liver disease by Toll-like receptor 4–mediated innate immune response. Hepat. Mon. 15, e27909 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Jacobs, F. & Wang, L. Adeno-associated viral vectors for correction of inborn errors of metabolism: progressing towards clinical application. Curr. Pharm. Des. 17, 2500–2515 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Cisco, R.M. et al. Induction of human dendritic cell maturation using transfection with RNA encoding a dominant-positive Toll-like receptor 4. J. Immunol. 172, 7162–7168 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Liaunardy-Jopeace, A. & Gay, N.J. Molecular and cellular regulation of Toll-like receptor 4 activity induced by lipopolysaccharide ligands. Front. Immunol. 5, 473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Henne, W.M., Buchkovich, N.J. & Emr, S.D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Ren, X. & Hurley, J.H. Proline-rich regions and motifs in trafficking: from ESCRT interaction to viral exploitation. Traffic 12, 1282–1290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, Q., Hope, L.W., Brasch, M., Reinhard, C. & Cohen, S.N. TSG101 interaction with HRS mediates endosomal trafficking and receptor downregulation. Proc. Natl. Acad. Sci. USA 100, 7626–7631 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bache, K.G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davies, B.A., Lee, J.R., Oestreich, A.J. & Katzmann, D.J. Membrane protein targeting to the MVB–lysosome. Chem. Rev. 109, 1575–1586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shields, S.B. & Piper, R.C. How ubiquitin functions with ESCRTs. Traffic 12, 1306–1317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hurley, J.H. & Stenmark, H. Molecular mechanisms of ubiquitin-dependent membrane traffic. Annu. Rev. Biophys. 40, 119–142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10, 398–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Martin-Serrano, J., Eastman, S.W., Chung, W. & Bieniasz, P.D. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein sorting pathway. J. Cell Biol. 168, 89–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Townsend, S.A. & Newsome, P.N. Non-alcoholic fatty liver disease in 2016. Br. Med. Bull. 119, 143–156 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Velloso, L.A., Folli, F. & Saad, M.J. TLR4 at the crossroads of nutrients, gut microbiota and metabolic inflammation. Endocr. Rev. 36, 245–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Abu-Shanab, A. & Quigley, E.M. The role of the gut microbiota in non-alcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7, 691–701 (2010).

    Article  PubMed  Google Scholar 

  43. Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Holland, W.L. et al. Lipid-induced insulin resistance mediated by the pro-inflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice. J. Clin. Invest. 121, 1858–1870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong, S.W. et al. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species–dependent manner. J. Biol. Chem. 284, 27384–27392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spruss, A. et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Jia, L. et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat. Commun. 5, 3878 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Sharifnia, T. et al. Hepatic TLR4 signaling in obese NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G270–G278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Ashkenazi, A. & Salvesen, G. Regulated cell death: signaling and mechanisms. Annu. Rev. Cell Dev. Biol. 30, 337–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Okin, D. & Medzhitov, R. The effect of sustained inflammation on hepatic mevalonate pathway results in hyperglycemia. Cell 165, 343–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chalasani, N. et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases and American College of Gastroenterology. Gastroenterology 142, 1592–1609 (2012).

    Article  PubMed  Google Scholar 

  53. Zhang, N. et al. Pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. PLoS One 10, e0132575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Musso, G., Cassader, M. & Gambino, R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat. Rev. Drug Discov. 15, 249–274 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Baiceanu, A., Mesdom, P., Lagouge, M. & Foufelle, F. Endoplasmic reticulum proteostasis in hepatic steatosis. Nat. Rev. Endocrinol. 12, 710–722 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Czech, M.P. Obesity Notches up fatty liver. Nat. Med. 19, 969–971 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, P.X. et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates non-alcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 23, 439–449 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Ratner, M. Gilead bets big on Nimbus' fatty liver disease drug. Nat. Biotechnol. 34, 575–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, 2011).

  62. Wang, P.X. et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signaling. Nat. Commun. 7, 10592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao, L. et al. Tumor necrosis factor receptor–associated factor 5 (Traf5) acts as an essential negative regulator of hepatic steatosis. J. Hepatol. 65, 125–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Xiang, M. et al. Targeting hepatic TRAF1–ASK1 signaling to improve inflammation, insulin resistance and hepatic steatosis. J. Hepatol. 64, 1365–1377 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Kleiner, D.E. et al. Design and validation of a histological scoring system for non-alcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    Article  PubMed  Google Scholar 

  66. Osawa, Y. et al. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor–α. J. Biol. Chem. 280, 27879–27887 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Yan, F.J. et al. The E3 ligase TRIM8 targets TAK1 to promote insulin resistance and steatohepatitis. Hepatology http://dx.doi.org/10.1002/hep.28971 (2016).

  68. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, J.H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xie, L. et al. DKK3 expression in hepatocytes defines susceptibility to liver steatosis and obesity. J. Hepatol. 65, 113–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Zlatic, S.A., Ryder, P.V., Salazar, G. & Faundez, V. Isolation of labile multiprotein complexes by in vivo–controlled cellular cross-linking and immuno-magnetic affinity chromatography. J. Vis. Exp. 37, e1855 (2010).

    Google Scholar 

  72. Wang, X. et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, X. et al. Rhesus macaques develop metabolic syndrome with reversible vascular dysfunction responsive to pioglitazone. Circulation 124, 77–86 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, L. et al. AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta). Mol. Ther. 19, 2012–2020 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kraus, D. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oh, D.Y. et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med. 20, 942–947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, X.A. et al. Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice. Hepatology 58, 603–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, X.A. et al. Interferon regulatory factor 3 constrains IKKβ–NF-κB signaling to alleviate hepatic steatosis and insulin resistance. Hepatology 59, 870–885 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate L. Wan and J. Li (Huazhong University of Science and Technology) for PET operation. We thank L. Ma (Wuhan University), a biostatistics expert, for his help with our statistical analyses. This work was supported by the National Science Fund for Distinguished Young Scholars (grant no. 81425005; H.L.), the National Natural Science Foundation (grant no. 81330005 (H.L.), 81630011 (H.L.) and 91329000 (H.L.)), National Science and Technology Support Project no. 2014BAI02B01 (H.L.) and 2015BAI08B01 (H.L.), and National Key Research and Development Program no. 2013YQ030923-05 (H.L.) and 2016YFF0101504 (Z.-G.S.).

Author information

Authors and Affiliations

Authors

Contributions

G.-N.Z., P.Z., J.G. and X.-J.Z. designed and performed experiments, analyzed data and wrote the manuscript; P.-X.W., M.Y., Z.J., Y.-X.J., J.T. and Yutao Wang performed experiments, analyzed data and provided useful advice on the manuscript; J.F. and Yong Wang performed the monkey experiments; X.-Y.Z. performed the western blot experiments; X.Z. constructed the genetically engineered mice used here; L.-J.S. and Q.-F.W. established the mouse models of severe NAFLD and performed mouse experiments; Q.X. performed the PET experiments; Z.-G.S., Z.W. and Z.H. helped design the project and edited the manuscript; and H.L. designed and supervised the experiments and wrote the manuscript.

Corresponding author

Correspondence to Hongliang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–25 and Supplementary Tables 1–4 (PDF 7027 kb)

Supplementary Table 5

Identified proteins interacting with TMBIM1 by mass spectrometry (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, GN., Zhang, P., Gong, J. et al. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat Med 23, 742–752 (2017). https://doi.org/10.1038/nm.4334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing