Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A heart–brain–kidney network controls adaptation to cardiac stress through tissue macrophage activation

Abstract

Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell–cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6Clo macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6Clo macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Renal Klf5 deletion disrupts the cardiac adaptive response to pressure overload and affects cardiac macrophage expansion.
Figure 2: Cardiac macrophages are essential for the cardiac adaptive response.
Figure 3: Macrophage-derived AREG mediates the cardiac adaptive response to TAC.
Figure 4: The kidney controls local macrophage proliferation in the heart after TAC.
Figure 5: Sympathetic activation links the heart and kidneys in the adaptive response to TAC.
Figure 6: β2-adrenergic receptor signaling regulates CD cell activation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Lindenfeld, J. et al. HFSA 2010 Comprehensive Heart Failure Practice Guideline. J. Card. Fail. 16, e1–e194 (2010).

    Article  PubMed  Google Scholar 

  2. Smith, G.L. et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J. Am. Coll. Cardiol. 47, 1987–1996 (2006).

    Article  PubMed  Google Scholar 

  3. Damman, K., Voors, A.A., Navis, G., van Veldhuisen, D.J. & Hillege, H.L. The cardiorenal syndrome in heart failure. Prog. Cardiovasc. Dis. 54, 144–153 (2011).

    Article  PubMed  Google Scholar 

  4. Bock, J.S. & Gottlieb, S.S. Cardiorenal syndrome: new perspectives. Circulation 121, 2592–2600 (2010).

    Article  PubMed  Google Scholar 

  5. McCullough, P.A. et al. Pathophysiology of the cardiorenal syndromes: executive summary from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Blood Purif. 37 (Suppl. 2), 2–13 (2014).

    Article  CAS  Google Scholar 

  6. Salman, I.M. Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr. Hypertens. Rep. 17, 59 (2015).

    Article  PubMed  Google Scholar 

  7. Takeda, N. et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J. Clin. Invest. 120, 254–265 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Sano, M. et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446, 444–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heidt, T. et al. Differential contribution of monocytes to heart macrophages in steady state and after myocardial infarction. Circ. Res. 115, 284–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaikita, K. et al. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. 165, 439–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujiu, K., Manabe, I. & Nagai, R. Renal collecting-duct epithelial cells regulate inflammation in tubule-interstitial damage in mice. J. Clin. Invest. 121, 3425–3441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Komada, T. et al. ASC in renal collecting-duct epithelial cells contributes to inflammation and injury after unilateral ureteral obstruction. Am. J. Pathol. 184, 1287–1298 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Li, L. et al. Reduced ENaC activity and blood pressure in mice with genetic knockout of the insulin receptor in the renal collecting duct. Am. J. Physiol. Renal Physiol. 304, F279–F288 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Stegbauer, J. et al. AT1 receptors in the collecting duct directly modulate the concentration of urine. J. Am. Soc. Nephrol. 22, 2237–2246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nelson, R.D. et al. Expression of an AQP2–Cre recombinase transgene in kidney and male reproductive system of transgenic mice. Am. J. Physiol. 275, C216–C226 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crane, M.J. et al. The monocyte to macrophage transition in the murine sterile wound. PLoS One 9, e86660 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Weisheit, C. et al. Ly6Clow and not Ly6Chigh macrophages accumulate first in the heart in a model of murine pressure overload. PLoS One 9, e112710 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Robbins, C.S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perrino, C. et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Invest. 116, 1547–1560 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaiss, D.M., Gause, W.C., Osborne, L.C. & Artis, D. Emerging functions of amphiregulin in orchestrating immunity, inflammation and tissue repair. Immunity 42, 216–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luetteke, N.C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126, 2739–2750 (1999).

    CAS  PubMed  Google Scholar 

  26. Gough, N.M. et al. Molecular cloning of cDNA encoding a murine hematopoietic growth regulator, granulocyte–macrophage colony-stimulating factor. Nature 309, 763–767 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Muñoz, C. et al. Pyrrolidine dithiocarbamate inhibits the production of interleukin-6, interleukin-8 and granulocyte–macrophage colony-stimulating factor by human endothelial cells in response to inflammatory mediators: modulation of NF-κB and AP-1 transcription factor activity. Blood 88, 3482–3490 (1996).

    PubMed  Google Scholar 

  28. Rafiq, K. et al. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aorticregurgitation. Circulation 125, 1402–1413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oliver, J.A., Pinto, J., Sciacca, R.R. & Cannon, P.J. Basal norepinephrine overflow into the renal vein: effect of renal nerve stimulation. Am. J. Physiol. 239, F371–F377 (1980).

    CAS  PubMed  Google Scholar 

  30. Bhatt, D.L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Davies, J.E. et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH–Pilot study. Int. J. Cardiol. 162, 189–192 (2013).

    Article  PubMed  Google Scholar 

  32. Verloop, W.L. et al. Renal denervation in heart failure with normal left ventricular ejection fraction. Rationale and design of the DIASTOLE (DenervatIon of the renAl Sympathetic nerves in hearT failure with nOrmal Lv Ejection fraction) trial. Eur. J. Heart Fail. 15, 1429–1437 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Parissis, J.T., Adamopoulos, S.N., Venetsanou, K.F., Karas, S.M. & Kremastinos, D.T. Elevated plasma amylase levels in advanced chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy: correlation with circulating interleukin-6 activity. J. Interferon Cytokine Res. 23, 329–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Naito, K. et al. Differential effects of GM-CSF and G-CSF on infiltration of dendritic cells during early left ventricular remodeling after myocardial infarction. J. Immunol. 181, 5691–5701 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lavine, K.J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl. Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nacu, N. et al. Macrophages produce TGF-β-induced (β-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J. Immunol. 180, 5036–5044 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Yan, D. et al. Macrophages overexpressing VEGF target to infarcted myocardium and improve neovascularization and cardiac function. Int. J. Cardiol. 164, 334–338 (2013).

    Article  PubMed  Google Scholar 

  38. Aurora, A.B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heymans, S. et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128, 1420–1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Swirski, F.K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction and heart failure. Science 339, 161–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bristow, M.R. Treatment of chronic heart failure with β-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ. Res. 109, 1176–1194 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Woo, A.Y.-H., Song, Y., Xiao, R.-P. & Zhu, W. Biased β2-adrenoceptor signaling in heart failure: pathophysiology and drug discovery. Br. J. Pharmacol. 172, 5444–5456 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Zhou, Q. et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat. Med. 17, 1003–1009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Birks, E.J. et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123, 381–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Ahmet, I. et al. Cardioprotective and survival benefits of long-term combined therapy with β2-adrenoreceptor (AR) agonist and β1-AR blocker in dilated cardiomyopathy postmyocardial infarction. J. Pharmacol. Exp. Ther. 325, 491–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Rockman, H.A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 88, 8277–8281 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Swirski, F.K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, X. et al. Effect of renal sympathetic denervation on atrial substrate remodeling in ambulatory canines with prolonged atrial pacing. PLoS One 8, e64611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamada, H. et al. Messenger RNA quantification after fluorescence-activated cell sorting using intracellular antigens. Biochem. Biophys. Res. Commun. 397, 425–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Carlson, M.J. et al. In vitro–differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood 113, 1365–1374 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qi, Z. et al. Serial determination of glomerular filtration rate in conscious mice using FITC–inulin clearance. Am. J. Physiol. Renal Physiol. 286, F590–F596 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, W. et al. Impaired sodium excretion and salt-sensitive hypertension in corin-deficient mice. Kidney Int. 82, 26–33 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rubera, I. et al. Collecting duct-specific gene inactivation of α−ENaC in the mouse kidney does not impair sodium and potassium balance. J. Clin. Invest. 112, 554–565 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, X.C., Shao, Y. & Zhuo, J.L. AT1a receptor knockout in mice impairs urine concentration by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla. Kidney Int. 76, 169–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tilley, D.G. et al. β-adrenergic receptor–mediated cardiac contractility is inhibited via vasopressin type 1A–receptor-dependent signaling. Circulation 130, 1800–1811 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, S.M. et al. Low plasma renin and reduced renin secretory responses to acute stimuli in conscious COX-2-deficient mice. Am. J. Physiol. Renal Physiol. 292, F415–F422 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Matsusaka, T. et al. Liver angiotensinogen is the primary source of renal angiotensin II. J. Am. Soc. Nephrol. 23, 1181–1189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stender, R.N., Engler, W.J., Braun, T.M. & Hankenson, F.C. Establishment of blood analyte intervals for laboratory mice and rats by use of a portable clinical analyzer. J. Am. Assoc. Lab. Anim. Sci. 46, 47–52 (2007).

    CAS  PubMed  Google Scholar 

  60. Haque, M.Z. & Majid, D.S. Assessment of renal functional phenotype in mice lacking gp91PHOX subunit of NAD(P)H oxidase. Hypertension 43, 335–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ramer, L.M., Borisoff, J.F. & Ramer, M.S. Rho kinase inhibition enhances axonal plasticity and attenuates cold hyperalgesia after dorsal rhizotomy. J. Neurosci. 24, 10796–10805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson, R.A., Okragly, A.J., Haak-Frendscho, M. & Mitchell, G.S. Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord. J. Neurosci. 20, RC77 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, H.J., Wang, W., Cornish, K.G., Rozanski, G.J. & Zucker, I.H. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64, 745–755 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Uno, K. et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 312, 1656–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Imai, J. et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322, 1250–1254 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Okada, S. et al. Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system–mediated pathway. Arterioscler. Thromb. Vasc. Biol. 32, 1902–1909 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Satoh, H., Delbridge, L.M., Blatter, L.A. & Bers, D.M. Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species dependence and developmental effects. Biophys. J. 70, 1494–1504 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spach, M.S., Heidlage, J.F., Barr, R.C. & Dolber, P.C. Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1, 500–515 (2004).

    Article  PubMed  Google Scholar 

  69. Banerjee, I., Fuseler, J.W., Price, R.L., Borg, T.K. & Baudino, T.A. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 293, H1883–H1891 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the excellent technical assistance of M. Hayashi, N. Yamanaka, A. Ono, X. Yingda and H. Tomita. Areg-knockout mice were a generous gift from D. Lee (University of Georgia). This study was supported in part by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from the Japan Society for the Promotion of Science (R.N.), and by grants-in-aid (26461125 (K.F.), 15H01506 (I.M.), 16H05295 (I.M.), 16K15437 ((I.M.))) from the MEXT Japan, a grant for the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program of MEXT (R.N.), the AMED-CREST from the Japan Agency for Medical Research and Development (AMED) (I.M.), PRESTO from JST (K.F.), grants from the Kanae foundation (K.F.); a Sakakibara Memorial Research Grant from the Japan Research Promotion Society for Cardiovascular Diseases (K.F.), the Banyu Life Science Foundation (K.F.), the Takeda Science Foundation (I.M.), the Mitsubishi Foundation (I.M.), and the SENSHIN Medical Science Foundation (I.M.).

Author information

Authors and Affiliations

Authors

Contributions

K.F., I.M. and R.N. conceived and designed the project; K.F., M.S., Y.N., F.O. and S.M. performed the experiments; K.F., M.S. and I.M. analyzed the data and wrote the manuscript; S.N. provided the Areg−/− mice; I.K. contributed to data interpretation; and K.N. and S.I. performed computational analyses.

Corresponding authors

Correspondence to Ryozo Nagai or Ichiro Manabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–41 and Supplementary Tables 1–3. (PDF 7110 kb)

Supplementary Video 1

CD-Klf5KO mouse 6 weeks after TAC (WMV 3099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiu, K., Shibata, M., Nakayama, Y. et al. A heart–brain–kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat Med 23, 611–622 (2017). https://doi.org/10.1038/nm.4326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing