Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples

Abstract

A substantial proportion of tumors consist of genotypically distinct subpopulations of cancer cells. This intratumor genetic heterogeneity poses a substantial challenge for the implementation of precision medicine. Single-cell genomics constitutes a powerful approach to resolve complex mixtures of cancer cells by tracing cell lineages and discovering cryptic genetic variations that would otherwise be obscured in tumor bulk analyses. Because of the chemical alterations that result from formalin fixation, single-cell genomic approaches have largely remained limited to fresh or rapidly frozen specimens. Here we describe the development and validation of a robust and accurate methodology to perform whole-genome copy-number profiling of single nuclei obtained from formalin-fixed paraffin-embedded clinical tumor samples. We applied the single-cell sequencing approach described here to study the progression from in situ to invasive breast cancer, which revealed that ductal carcinomas in situ show intratumor genetic heterogeneity at diagnosis and that these lesions may progress to invasive breast cancer through a variety of evolutionary processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the formalin-fixed paraffin-embedded (FFPE) single-cell sequencing platform.
Figure 2: Establishment of a whole-genome copy-number profiling method for single nuclei derived from FFPE samples.
Figure 3: Validation of the whole-genome CN method for FFPE-derived single nuclei using samples from case 2, a synchronous DCIS and invasive breast cancer.
Figure 4: Sequencing of FFPE single nuclei from samples of case 3 and phylogeny reconstruction of progression from DCIS to invasive breast cancer.
Figure 5: Whole-genome single-nucleus copy-number information for case 4, a suboptimal, overly damaged FFPE sample.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Navin, N. et al. Tumor evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aparicio, S. & Caldas, C. The implications of clonal genome evolution for cancer medicine. N. Engl. J. Med. 368, 842–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Ng, C.K. et al. Intratumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 16, 107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hernandez, L. et al. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intratumor genetic heterogeneity and clonal selection. J. Pathol. 227, 42–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Bruin, E.C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yates, L.R. et al. Subclonal diversification of primary breast cancer revealed by multi-region sequencing. Nat. Med. 21, 751–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng, C.K., Schultheis, A.M., Bidard, F.C., Weigelt, B. & Reis-Filho, J.S. Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J. Natl. Cancer Inst. 107, djv015 (2015).

    PubMed  Google Scholar 

  9. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y. et al. Clonal evolution in breast cancer revealed by single-nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baslan, T. et al. Optimizing sparse sequencing of single cells for highly multiplex copy-number profiling. Genome Res. 25, 714–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baslan, T. et al. Genome-wide copy-number analysis of single cells. Nat. Protoc. 7, 1024–1041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leung, M.L., Wang, Y., Waters, J. & Navin, N.E. SNES: single -nucleus exome sequencing. Genome Biol. 16, 55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Voet, T. et al. Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 41, 6119–6138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zardavas, D., Irrthum, A., Swanton, C. & Piccart, M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 12, 381–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert, M.T. et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues—which methods are useful when? PLoS One 2, e537 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng, Z. et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat. Med. 20, 1479–1484 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Van Allen, E.M. et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682–688 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Greer, C.E., Peterson, S.L., Kiviat, N.B. & Manos, M.M. PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am. J. Clin. Pathol. 95, 117–124 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. van Beers, E.H. et al. A multiplex-PCR predictor for aCGH success of FFPE samples. Br. J. Cancer 94, 333–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Adams, S. et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase 3 randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol. 32, 2959–2966 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Hosein, A.N. et al. Evaluating the repair of DNA derived from formalin-fixed paraffin-embedded tissues prior to genomic profiling by SNP–CGH analysis. Lab. Invest. 93, 701–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Bosso, M. & Al-Mulla, F. Whole-genome amplification of DNA extracted from FFPE tissues. Methods Mol. Biol. 724, 161–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Dean, F.B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garvin, T. et al. Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12, 1058–1060 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deleye, L. et al. Whole-genome amplification with SurePlex results in better copy-number alteration detection using sequencing data compared to the MALBAC method. Sci. Rep. 5, 11711 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lakhani, S.R., Ellis, I.O., Schnitt, S.J., Tan, P.H. & van de Vijver, M.J. WHO Classification of Breast Tumors (IARC, 2012).

  32. Sakr, R.A. et al. PI3K pathway activation in high-grade ductal carcinoma in situ—implications for progression to invasive breast carcinoma. Clin. Cancer Res. 20, 2326–2337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolff, A.C. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology–College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4013 (2013).

    Article  PubMed  Google Scholar 

  34. Hammond, M.E. et al. American Society of Clinical Oncology–College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Piscuoglio, S. et al. Uterine adenosarcomas are mesenchymal neoplasms. J. Pathol. 238, 381–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Weigelt, B., Warne, P.H., Lambros, M.B., Reis-Filho, J.S. & Downward, J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin. Cancer Res. 19, 3533–3544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weinreb, I. et al. Hotspot-activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nat. Genet. 46, 1166–1169 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Wersto, R.P. et al. Doublet discrimination in DNA cell-cycle analysis. Cytometry 46, 296–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, H. & Durbin, R. Fast and accurate short-read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Venkatraman, E.S. & Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Shen, R. & Seshan, V.E. FACETS: allele-specific copy-number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Landau, D.A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schultheis, A.M. et al. Massively parallel sequencing–based clonality analysis of synchronous endometrioid endometrial and ovarian carcinomas. J. Natl. Cancer Inst. 108, djv427 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schliep, K.P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. van de Wiel, M.A. & Wieringen, W.N. CGHregions: dimension reduction for array CGH data with minimal information loss. Cancer Inform. 3, 55–63 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Krasnitz, A., Sun, G., Andrews, P. & Wigler, M. Target inference from collections of genomic intervals. Proc. Natl. Acad. Sci. USA 110, E2271–E2278 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the M. Wigler lab (CSHL) for kindly providing access to necessary equipment, and M. Schatz, T. Garvin and R. Aboukhalil (CSHL) for their assistance with Ginkgo, an interactive, online platform for the analysis of CNAs from single cells. We thank the CSHL Flow Cytometry Shared Resources, which is supported in part by the National Cancer Institute Cancer Center Shared Grant award number CA045508. We thank S. Turcan and J. Taranda for critically reviewing the manuscript. This work was funded in part by a Susan G. Komen Investigator-Initiated Research Grant (IIR13265578; J.B.H., J.S.R.-F., T.A.K. and B.W.), and by the MSKCC Single-Cell Sequencing Initiative (T.B.) and the William and Joyce O'Neil Research Fund (T.B.). S.P. was funded in part by a Susan G. Komen Postdoctoral Fellowship grant (PDF14298348). J.S.R.-F. is funded in part by the Breast Cancer Research Foundation. Research reported in this publication was supported in part by the Cancer Center Support Grant of the US National Institutes of Health–National Cancer Institute (P30CA008748; MSKCC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

J.S.R.-F., B.W. and J.B.H. conceived and supervised the study; L.G.M. developed the single-cell FFPE methodology, and designed and conducted the experiments; T.B. and J.K. conducted the bioinformatics and statistical analyses of the single-cell data; K.A.B. and C.K.Y.N. performed the bioinformatics analysis of WES data; M.S. performed single-cell data preprocessing for use in the Ginkgo platform; S.P. prepared the FFPE and frozen blocks for cell lines; L.S. prepared the sequencing libraries for the FFPE and frozen cell lines and performed confocal microscopy of sorted nuclei; K.C. and G.N. conducted the FISH experiments, which were analyzed by K.C., G.N. and F.C.G.; T.A.K. and H.Y.W. provided tumor samples; J.S.R.-F. and F.C.G. reviewed and microdissected the histological samples; P.M., L.R. and S.D'I. performed flow cytometric analysis and sorting; T.B. prepared the LP–WGS libraries; H.C., A.S. and A.d.C.P. prepared the WES libraries; L.G.M., T.B., J.K., L.N., B.W., J.B.H. and J.S.R.-F. analyzed, discussed and interpreted the data; L.G.M., T.B., J.K., B.W., J.B.H. and J.S.R.-F. wrote the manuscript. All authors reviewed and approved the manuscript for submission.

Corresponding authors

Correspondence to Britta Weigelt, James B Hicks or Jorge S Reis-Filho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–10 and Supplementary Tables 1–3 (PDF 8826 kb)

Supplementary Table 4

Whole-Exome Sequencing Statistics And Somatic Mutations Identified In The Dcis And Idc Of Case 3 By Whole-Exome Sequencing (XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martelotto, L., Baslan, T., Kendall, J. et al. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat Med 23, 376–385 (2017). https://doi.org/10.1038/nm.4279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4279

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer