Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting β1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice

Abstract

Interactions between stem cells and their microenvironment, or niche, are essential for stem cell maintenance and function. Our knowledge of the niche for the skeletal muscle stem cell, i.e., the satellite cell (SC), is incomplete. Here we show that β1-integrin is an essential niche molecule that maintains SC homeostasis, and sustains the expansion and self-renewal of this stem cell pool during regeneration. We further show that β1-integrin cooperates with fibroblast growth factor 2 (Fgf2), a potent growth factor for SCs, to synergistically activate their common downstream effectors, the mitogen-activated protein (MAP) kinase Erk and protein kinase B (Akt). Notably, SCs in aged mice show altered β1-integrin activity and insensitivity to Fgf2. Augmenting β1-integrin activity with a monoclonal antibody restores Fgf2 sensitivity and improves regeneration after experimentally induced muscle injury. The same treatment also enhances regeneration and function of dystrophic muscles in mdx mice, a model for Duchenne muscular dystrophy. Therefore, β1-integrin senses the SC niche to maintain responsiveness to Fgf2, and this integrin represents a potential therapeutic target for pathological conditions of the muscle in which the stem cell niche is compromised.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Young Itgb1−/− SCs are defective in maintaining quiescence and sustaining regeneration.
Figure 2: Young Itgb1−/− SCs are defective in maintaining proliferation and are prone to differentiation.
Figure 3: Itgb1−/− SCs show a compromised response to Fgf-2 that can be partially restored by exogenous Fgf-2.
Figure 4: Activating β1-integrin in aged SCs can rescue aged-associated SC defects.
Figure 5: Activating β1-integrin in aged SCs enhances FGF signaling to promote SC expansion.
Figure 6: Activating β1-integrin in mdx mice ameliorates dystrophic pathology and restores muscle strength.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Ryall, J.G., Schertzer, J.D. & Lynch, G.S. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 9, 213–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fry, C.S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med. 21, 76–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conboy, I.M., Conboy, M.J., Smythe, G.M. & Rando, T.A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Shea, K.L. et al. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6, 117–129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carlson, M.E., Hsu, M. & Conboy, I.M. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454, 528–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernet, J.D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Price, F.D. et al. Inhibition of JAK–STAT signaling stimulates adult satellite cell function. Nat. Med. 20, 1174–1181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tierney, M.T. et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat. Med. 20, 1182–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mori, S. & Takada, Y. Cross-talk between fibroblast growth factor (FGF) receptor and integrin through direct integrin binding to FGF and resulting integrin–FGF–FGFR ternary complex formation. Med. Sci.(Basel) 1, 20–36 (2013).

    CAS  Google Scholar 

  13. Assoian, R.K. & Schwartz, M.A. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr. Opin. Genet. Dev. 11, 48–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Helbling-Leclerc, A. et al. Mutations in the laminin-α2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat. Genet. 11, 216–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Schwander, M. et al. β1-integrins regulate myoblast fusion and sarcomere assembly. Dev. Cell 4, 673–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Bulfield, G., Siller, W.G., Wight, P.A. & Moore, K.J. X-chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. Sci. USA 81, 1189–1192 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lepper, C., Conway, S.J. & Fan, C.-M. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460, 627–631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of β1-integrin in skin. Severe defects in epidermal proliferation, basement membrane formation and hair follicle invagination. J. Cell Biol. 150, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Webster, M.T. & Fan, C.-M. c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PLoS One 8, e81757 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roovers, K., Davey, G., Zhu, X., Bottazzi, M.E. & Assoian, R.K. α5β1-integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth-factor-treated cells. Mol. Biol. Cell 10, 3197–3204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Polanska, U.M., Fernig, D.G. & Kinnunen, T. Extracellular interactome of the FGF receptor–ligand system: complexities and the relative simplicity of the worm. Dev. Dyn. 238, 277–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Murakami, M., Elfenbein, A. & Simons, M. Noncanonical fibroblast growth factor signaling in angiogenesis. Cardiovasc. Res. 78, 223–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Miyamoto, S., Teramoto, H., Gutkind, J.S. & Yamada, K.M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135, 1633–1642 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Jones, N.C., Fedorov, Y.V., Rosenthal, R.S. & Olwin, B.B. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J. Cell. Physiol. 186, 104–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Siegel, A.L., Atchison, K., Fisher, K.E., Davis, G.E. & Cornelison, D.D. 3D time-lapse analysis of muscle satellite cell motility. Stem Cells 27, 2527–2538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Troy, A. et al. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38-α/β MAPK. Cell Stem Cell 11, 541–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Conboy, I.M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kragstrup, T.W., Kjaer, M. & Mackey, A.L. Structural, biochemical, cellular and functional changes in skeletal muscle extracellular matrix with aging. Scand. J. Med. Sci. Sports 21, 749–757 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Wood, L.K. et al. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J. Appl. Physiol. 117, 363–369 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bazzoni, G., Shih, D.-T., Buck, C.A. & Hemler, M.E. Monoclonal antibody 9EG7 defines a novel β1-integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J. Biol. Chem. 270, 25570–25577 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Takagi, J. & Springer, T.A. Integrin activation and structural rearrangement. Immunol. Rev. 186, 141–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Calderwood, D.A., Shattil, S.J. & Ginsberg, M.H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Hintermann, E., Bilban, M., Sharabi, A. & Quaranta, V. Inhibitory role of α6β4-associated erbB-2 and phosphoinositide 3-kinase in keratinocyte haptotactic migration dependent on α3β1 integrin. J. Cell Biol. 153, 465–478 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toledo, M.S., Suzuki, E., Handa, K. & Hakomori, S. Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J. Biol. Chem. 280, 16227–16234 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Sahni, A. & Francis, C.W. Stimulation of endothelial cell proliferation by FGF2 in the presence of fibrinogen requires αvβ3. Blood 104, 3635–3641 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lukjanenko et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat. Med. http://dx.doi.org/10.1038/nm.4126 (2016).

  38. Sicari, B.M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans, with volumetric muscle loss. Sci. Transl. Med. 6, 234ra58 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fukada, S. et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25, 2448–2459 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Tanentzapf, G., Devenport, D., Godt, D. & Brown, N.H. Integrin-dependent anchoring of a stem cell niche. Nat. Cell Biol. 9, 1413–1418 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: a Laboratory Manual (Cold Spring Harbor Laboratory Press, 1994).

  44. Hakim, C.H., Wasala, N.B. & Duan, D. Evaluation of muscle function of the extensor digitorum longus muscle ex vivo and tibialis anterior muscle in situ in mice. J. Vis. Exp. 21, e50183 (2013).

    Google Scholar 

  45. Barton, E.R., Lynch, G. & Khurana, T.S. Measuring Isometric Force of Isolated Mouse Muscles In Vitro (TREAT–NMD Neuromuscular Network, 2008).

  46. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Dikovskaia and S. Satchell for technical assistance, and C. Lepper, Y. Zheng and members of the Fan laboratory for comments. We especially thank A. Wagers for generously sharing the FACS and SC isolation protocol. Funding for this work was provided by the Carnegie Institution (C.-M.F.) and the National Institutes of Health (NIH) (grant no. AR060042; C.-M.F.). M.R. is supported by a predoctoral fellowship from the NIH (HD075345), and L.L. is supported by Carnegie Institution of Washington internal funds.

Author information

Authors and Affiliations

Authors

Contributions

M.R. and C.-M.F. conceptualized the study; M.R. performed experimental analysis for the mutant mice, as well as for the FACS and RNA-seq data, and demonstrated the utility of TS2/16; L.L. performed mechanistic experiments to investigate integrin–FGF synergy and conducted in situ muscle force measurements. C.-M.F. initiated and supervised the project. All three authors wrote, discussed and edited the manuscript.

Corresponding author

Correspondence to Chen-Ming Fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 44013 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozo, M., Li, L. & Fan, CM. Targeting β1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med 22, 889–896 (2016). https://doi.org/10.1038/nm.4116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing