Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice

Abstract

Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aging affects FN levels during skeletal muscle regeneration.
Figure 2: Fibronectin is a preferred adhesion substrate for mouse and human muscle progenitors.
Figure 3: MuSC aging pathways are modulated by fibronectin.
Figure 4: Impaired FN-mediated adhesion signaling in aged MuSCs.
Figure 5: Exposure to FN rescues adhesion signaling in aged MSCs.
Figure 6: Fibronectin treatment restores the regenerative capacity of aged muscles.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Bentzinger, C.F., Wang, Y.X., Dumont, N.A. & Rudnicki, M.A. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14, 1062–1072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilbert, P.M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lv, H. et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res. Ther. 6, 103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonaldo, P. et al. Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum. Mol. Genet. 7, 2135–2140 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Bentzinger, C.F. et al. Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12, 75–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Urciuolo, A. et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat. Commun. 4, 1964 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Tierney, M.T. et al. Autonomous extracellular matrix remodeling controls a progressive adaptation in muscle stem cell regenerative capacity during development. Cell Rep. 14, 1940–1952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mann, C.J. et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 1, 21 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. D'Souza, D.M. et al. Diet-induced obesity impairs muscle satellite cell activation and muscle repair through alterations in hepatocyte growth factor signaling. Physiol. Rep. 3, e12506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sousa-Victor, P., García-Prat, L., Serrano, A.L., Perdiguero, E. & Muñoz-Cánoves, P. Muscle stem cell aging: regulation and rejuvenation. TEM 26, 287–296 (2015).

    CAS  PubMed  Google Scholar 

  11. He, W.A. et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J. Clin. Invest. 123, 4821–4835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujimaki, S., Wakabayashi, T., Takemasa, T., Asashima, M. & Kuwabara, T. Diabetes and stem cell function. BioMed Res. Int. 2015, 592915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carlson, M.E. et al. Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol. Med. 1, 381–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watters, J.M., Clancey, S.M., Moulton, S.B., Briere, K.M. & Zhu, J.M. Impaired recovery of strength in older patients after major abdominal surgery. Ann. Surg. 218, 380–390 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Müller, M., Tohtz, S., Dewey, M., Springer, I. & Perka, C. Age-related appearance of muscle trauma in primary total hip arthroplasty and the benefit of a minimally invasive approach for patients older than 70 years. Int. Orthop. 35, 165–171 (2011).

    Article  PubMed  Google Scholar 

  16. Blau, H.M., Cosgrove, B.D. & Ho, A.T. The central role of muscle stem cells in regenerative failure with aging. Nat. Med. 21, 854–862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Price, F.D. et al. Inhibition of JAK–STAT signaling stimulates adult satellite cell function. Nat. Med. 20, 1174–1181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tierney, M.T. et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat. Med. 20, 1182–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bernet, J.D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5, e15004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakai, T. et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nat. Med. 7, 324–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Seibler, J. et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siegel, A.L., Atchison, K., Fisher, K.E., Davis, G.E. & Cornelison, D.D. 3D time-lapse analysis of muscle satellite cell motility. Stem Cells 27, 2527–2538 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brafman, D.A., Shah, K.D., Fellner, T., Chien, S. & Willert, K. Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev. 18, 1141–1154 (2009).

    Article  PubMed  Google Scholar 

  28. Brafman, D.A. et al. Investigating the role of the extracellular environment in modulating hepatic stellate cell biology with arrayed combinatorial microenvironments. Integr. Biol. (Camb) 1, 513–524 (2009).

    Article  CAS  Google Scholar 

  29. Moreno-Layseca, P. & Streuli, C.H. Signaling pathways linking integrins with cell cycle progression. Matrix Biol. 34, 144–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Sulzmaier, F.J., Jean, C. & Schlaepfer, D.D. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 14, 598–610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of β1-integrin in skin. Severe defects in epidermal proliferation, basement membrane formation and hair follicle invagination. J. Cell Biol. 150, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim, S.T. et al. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol. Cell 29, 9–22 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conboy, I.M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Tigges, J. et al. The hallmarks of fibroblast aging. Mech. Ageing Dev. 138, 26–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Lanner, F. & Rossant, J. The role of FGF–Erk signaling in pluripotent cells. Development 137, 3351–3360 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, S.H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signaling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Rozo, M., Li, L. & Fan, C.-M. Targeting β1-integrin signaling enhances regeneration in aged and dystrophic mice. Nat. Med. 10.1038/nm.4116 (2016).

  38. García-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Plath, T. et al. A novel function for the tumor suppressor p16INK4a: induction of anoikis via upregulation of the α5β1 fibronectin receptor. J. Cell Biol. 150, 1467–1478 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lukjanenko, L., Brachat, S., Pierrel, E., Lach-Trifilieff, E. & Feige, J.N. Genomic profiling reveals that transient adipogenic activation is a hallmark of mouse models of skeletal muscle regeneration. PLoS One 8, e71084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lepper, C., Conway, S.J. & Fan, C.M. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460, 627–631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, e3 (2004).

    Article  Google Scholar 

  45. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  46. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Ritchie for help with mouse husbandry. We are grateful to the NIHS community for fruitful discussions and support, in particular to the Aging and Stem Cells groups, and to E. Rolland and E. Baetge. We thank C. Poser for excellent technical assistance. ROSA26–CreERT2 mice were provided by F. Stewart (Technische Universität Dresden, Germany) as a kind gift to M.A.R. J.V.M. and M.J.J. were supported by a grant from the German Research Foundation (DFG) (grant MA–3975/2–1). M.A.R. holds the Canada Research Chair in Molecular Genetics and is supported by a grant from the Government of the Ontario Ministry of Research and Innovation (MRI) (grant ORF–RE05–084). M.R. and C.M.F. are supported by the National Institutes of Health grants (grants HD075345 and AR060042). C.F.B. is supported by the Fondation Suisse de Recherche sur les Maladies Musculaires (FSRMM).

Author information

Authors and Affiliations

Authors

Contributions

M.J.J., N.H., C.P.-C., M.R., S.K., M.S., L. Li, S.M., U.L., F.S., N.A.D., A.P., C.-M.F. and J.v.M., designed and conducted experiments, and analyzed results; E.M. and F.R. performed data analysis; G.J. provided support with high-content image acquisition and analysis; M.A.R. provided critical reagents, edited the manuscript and helped with data interpretation; R.F. provided critical reagents; D.H.W. helped with data acquisition and analysis; P.S. and P.D. helped with experimental design, data interpretation and editing of the manuscript; and L. Lukjanenko, J.N.F. and C.F.B. designed and conducted experiments, analyzed results and wrote the manuscript.

Corresponding authors

Correspondence to Jerome N Feige or C Florian Bentzinger.

Ethics declarations

Competing interests

L. Lukjanenko, N.H., C.P.-C., E.M., S.K., G.J., S.M., F.R., U.L., F.S., A.P., P.S., P.D., J.N.F. and C.F.B. are employees of the Nestlé Institute of Health Sciences S.A., Switzerland.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 4843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukjanenko, L., Jung, M., Hegde, N. et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med 22, 897–905 (2016). https://doi.org/10.1038/nm.4126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing