Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer

Abstract

MYC oncoproteins are involved in the genesis and maintenance of the majority of human tumors but are considered undruggable. By using a direct in vivo shRNA screen, we show that liver cancer cells that have mutations in the gene encoding the tumor suppressor protein p53 (Trp53 in mice and TP53 in humans) and that are driven by the oncoprotein NRAS become addicted to MYC stabilization via a mechanism mediated by aurora kinase A (AURKA). This MYC stabilization enables the tumor cells to overcome a latent G2/M cell cycle arrest that is mediated by AURKA and the tumor suppressor protein p19ARF. MYC directly binds to AURKA, and inhibition of this protein–protein interaction by conformation-changing AURKA inhibitors results in subsequent MYC degradation and cell death. These conformation-changing AURKA inhibitors, with one of them currently being tested in early clinical trials, suppressed tumor growth and prolonged survival in mice bearing Trp53-deficient, NRAS-driven MYC-expressing hepatocellular carcinomas (HCCs). TP53-mutated human HCCs revealed increased AURKA expression and a positive correlation between AURKA and MYC expression. In xenograft models, mice bearing TP53-mutated or TP53-deleted human HCCs were hypersensitive to treatment with conformation-changing AURKA inhibitors, thus suggesting a therapeutic strategy for this subgroup of human HCCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trp53-deficient hepatocytes undergo a G2/M cell cycle arrest after activation of RAS–MAPK signaling.
Figure 2: In vivo RNAi screening identifies an AURKA-dependent G2/M arrest in Trp53−/− hepatocytes.
Figure 3: MYC induction during liver regeneration allows NrasG12V; Trp53−/− hepatocytes to bypass a G2/M cell cycle arrest.
Figure 4: AURKA stabilizes MYC by a protein–protein interaction in Trp53−/− HCCs.
Figure 5: Conformation-changing AURKA inhibitors prohibit the formation of p-MYC–AURKA protein complexes.
Figure 6: TP53-altered human HCCs show marked treatment responses toward the AURKA inhibitor MLN8237.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

Referenced accessions

Gene Expression Omnibus

Protein Data Bank

References

  1. Eilers, M. & Eisenman, R.N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meyer, N. & Penn, L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Soucek, L. et al. Modeling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shachaf, C.M. et al. MYC inactivation uncovers pluripotent differentiation and tumor dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Felsher, D.W. & Bishop, J.M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Podsypanina, K., Politi, K., Beverly, L.J. & Varmus, H.E. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc. Natl. Acad. Sci. USA 105, 5242–5247 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Otto, T. et al. Stabilization of NMYC is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Brockmann, M. et al. Small-molecule inhibitors of Aurora A induce proteasomal degradation of N-MYC in childhood neuroblastoma. Cancer Cell 24, 75–89 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gustafson, W.C. et al. Drugging MYCN through an allosteric transition in aurora kinase A. Cancer Cell 26, 414–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mosquera, J.M. et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal-treatment-related neuroendocrine prostate cancer. Neoplasia 15, 1–10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bruix, J., Gores, G.J. & Mazzaferro, V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 63, 844–855 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Lord, R., Suddle, A. & Ross, P.J. Emerging strategies in the treatment of advanced hepatocellular carcinoma: the role of targeted therapies. Int. J. Clin. Pract. 65, 182–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Welsch, C., Jesudian, A., Zeuzem, S. & Jacobson, I. New direct-acting antiviral agents for the treatment of hepatitis C virus infection and perspectives. Gut 61 (suppl. 1), i36–i46 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Calle, E.E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. White, D.L., Kanwal, F. & El-Serag, H.B. Association between non-alcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 10, 1342–1359.e2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, J. et al. Alterations of TP53 are associated with a poor outcome for patients with hepatocellular carcinoma: evidence from a systematic review and meta-analysis. Eur. J. Cancer 48, 2328–2338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan, K.L., Guan, X.Y. & Ng, I.O. High-throughput tissue microarray analysis of c-Myc activation in chronic liver diseases and hepatocellular carcinoma. Hum. Pathol. 35, 1324–1331 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Meek, D.W. Tumor suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 9, 714–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Sherr, C.J. Tumor surveillance via the ARF–p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Tannapfel, A. et al. INK4A–ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene 20, 7104–7109 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Sherr, C.J. Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer 6, 663–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Carlson, C.M., Frandsen, J.L., Kirchhof, N., McIvor, R.S. & Largaespada, D.A. Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc. Natl. Acad. Sci. USA 102, 17059–17064 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kang, T.W. et al. Senescence surveillance of premalignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Wuestefeld, T. et al. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153, 389–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Tward, A.D. et al. Genomic progression in mouse models for liver tumors. Cold Spring Harb. Symp. Quant. Biol. 70, 217–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Rudalska, R. et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat. Med. 20, 1138–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calvisi, D.F. et al. Ubiquitous activation of RAS and JAK–STAT pathways in human HCC. Gastroenterology 130, 1117–1128 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt, C.M., McKillop, I.H., Cahill, P.A. & Sitzmann, J.V. Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 236, 54–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Ito, Y. et al. Activation of mitogen-activated protein kinases–extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27, 951–958 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Crane, R., Gadea, B., Littlepage, L., Wu, H. & Ruderman, J.V. Aurora A, meiosis and mitosis. Biol. Cell 96, 215–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Katayama, H., Brinkley, W.R. & Sen, S. The aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev. 22, 451–464 (2003).

    Article  PubMed  Google Scholar 

  35. Katsha, A., Belkhiri, A., Goff, L. & El-Rifai, W. Aurora kinase A in gastrointestinal cancers: time to target. Mol. Cancer 14, 106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, L.Y. et al. Aurora A is essential for early embryonic development and tumor suppression. J. Biol. Chem. 283, 31785–31790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimura, M.T. et al. Two functional coding single-nucleotide polymorphisms in STK15 (aurora A) coordinately increase esophageal cancer risk. Cancer Res. 65, 3548–3554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khwaja, A., Rodriguez-Viciana, P., Wennström, S., Warne, P.H. & Downward, J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B (AKT) cellular survival pathway. EMBO J. 16, 2783–2793 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klein, A., Flügel, D. & Kietzmann, T. Transcriptional regulation of serine/threonine kinase 15 (STK15) expression by hypoxia and HIF-1. Mol. Biol. Cell 19, 3667–3675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Farazi, P.A. & DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer 6, 674–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Pérez Tamayo, R. Is cirrhosis of the liver experimentally produced by CCl4 an adequate model of human cirrhosis? Hepatology 3, 112–120 (1983).

    Article  PubMed  Google Scholar 

  42. Taub, R. Liver regeneration 4: transcriptional control of liver regeneration. FASEB J. 10, 413–427 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. White, P., Brestelli, J.E., Kaestner, K.H. & Greenbaum, L.E. Identification of transcriptional networks during liver regeneration. J. Biol. Chem. 280, 3715–3722 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, H. et al. Overcoming CML acquired resistance by specific inhibition of Aurora A kinase in the KCL-22 cell model. Carcinogenesis 33, 285–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Carpinelli, P. et al. PHA-739358, a potent inhibitor of aurora kinases with a selective target inhibition profile relevant to cancer. Mol. Cancer Ther. 6, 3158–3168 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Aliagas-Martin, I. et al. A class of 2,4-bisanilinopyrimidine Aurora A inhibitors with unusually high selectivity against Aurora B. J. Med. Chem. 52, 3300–3307 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Fancelli, D. et al. 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J. Med. Chem. 49, 7247–7251 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Falchook, G. et al. Investigational Aurora A kinase inhibitor alisertib (MLN8237) as an enteric-coated tablet formulation in nonhematologic malignancies: phase 1 dose-escalation study. Invest. New Drugs 32, 1181–1187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amati, B. Myc degradation: dancing with ubiquitin ligases. Proc. Natl. Acad. Sci. USA 101, 8843–8844 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eilers, M., Schirm, S. & Bishop, J.M. The MYC protein activates transcription of the α-prothymosin gene. EMBO J. 10, 133–141 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watson, J.D., Oster, S.K., Shago, M., Khosravi, F. & Penn, L.Z. Identifying genes regulated in a Myc-dependent manner. J. Biol. Chem. 277, 36921–36930 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, L. et al. Aurora kinase A mediates c-Myc's oncogenic effects in hepatocellular carcinoma. Mol. Carcinog. 54, 1467–1479 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burgess, D.J. et al. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc. Natl. Acad. Sci. USA 105, 9053–9058 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Braumüller, H. et al. T helper 1 cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Huesken, D. et al. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Vert, J.P., Foveau, N., Lajaunie, C. & Vandenbrouck, Y. An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics 7, 520 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zender, L. et al. Caspase-8 small interfering RNA prevents acute liver failure in mice. Proc. Natl. Acad. Sci. USA 100, 7797–7802 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Diefenbacher, M.E. et al. Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer Res. 75, 1181–1186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Schulze-Osthoff, S.W. Lowe, W. Albrecht, K. Breuhahn, R. Geffers, S. Nahnsen, M. Gehringer, E. Rist, C. Fellmeth, P. Katiyar, S. Fillinger, M. Jarek, M. Scharfe, M. Diefenbacher and the members of the Zender laboratory for fruitful discussions, technical assistance or reagents. We thank the Center for Scientific Computing (Espoo, Finland) for software and hardware support. This work was supported by the German Research Foundation (DFG; grants FOR2314 (L.Z., D.D. and M.E.) and SFB685 (L.Z.)), the Gottfried Wilhelm Leibniz Program (L.Z.), the European Research Council (projects 'CholangioConcept' (L.Z.), 'Heptromic' (L.Z.) and 'Auromyc' (M.E.)), the German Ministry for Education and Research (BMBF) (eMed (Multiscale HCC), the German Universities Excellence Initiative (third funding line: 'future concept') (L.Z.), the German Center for Translational Cancer Research (DKTK) (L.Z.) and the German–Israeli Cooperation in Cancer Research (DKFZ–MOST) (L.Z.).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and D.D. designed the study; D.D., R.R., G.C., T.-W.K., T.W., A.H., T.Y., L.H. and P.B. conducted the research; T.L. performed the histopathological analyses; J.-C.N., S.I., T.L. and J.Z.-R. collected and analyzed the human HCC samples; T.P. and A.P. performed the molecular modeling; N.P.M., S.L. and M.E. contributed to research design; and L.Z. and D.D wrote the manuscript.

Corresponding author

Correspondence to Lars Zender.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 9476 kb)

Supplementary Table 1

mRNA Expression data (XLS 7070 kb)

Supplementary Table 2

Genes included in the shRNA library (XLS 36 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauch, D., Rudalska, R., Cossa, G. et al. A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med 22, 744–753 (2016). https://doi.org/10.1038/nm.4107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing