Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer

Abstract

Tumor heterogeneity may reduce the efficacy of molecularly guided systemic therapy for cancers that have metastasized. To determine whether the genomic alterations in a single metastasis provide a reasonable assessment of the major oncogenic drivers of other dispersed metastases in an individual, we analyzed multiple tumors from men with disseminated prostate cancer through whole-exome sequencing, array comparative genomic hybridization (CGH) and RNA transcript profiling, and we compared the genomic diversity within and between individuals. In contrast to the substantial heterogeneity between men, there was limited diversity among metastases within an individual. The number of somatic mutations, the burden of genomic copy number alterations and aberrations in known oncogenic drivers were all highly concordant, as were metrics of androgen receptor (AR) activity and cell cycle activity. AR activity was inversely associated with cell proliferation, whereas the expression of Fanconi anemia (FA)-complex genes was correlated with elevated cell cycle progression, expression of the E2F transcription factor 1 (E2F1) and loss of retinoblastoma 1 (RB1). Men with somatic aberrations in FA-complex genes or in ATM serine/threonine kinase (ATM) exhibited significantly longer treatment-response durations to carboplatin than did men without defects in genes encoding DNA-repair proteins. Collectively, these data indicate that although exceptions exist, evaluating a single metastasis provides a reasonable assessment of the major oncogenic driver alterations that are present in disseminated tumors within an individual, and thus may be useful for selecting treatments on the basis of predicted molecular vulnerabilities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated landscape of somatic aberrations and AR activity in mCRPC.
Figure 2: Relationships between AR activity and the expression of AR and other nuclear hormone receptor genes.
Figure 3: Molecular aberrations are shared between metastases within individuals with mCRPC.
Figure 4: Tumor cell cycle activity within and between individuals.
Figure 5: CCP activity and E2F1 expression are inversely associated with AR activity.
Figure 6: Expression levels of FA-complex genes are associated with CCP and E2F1 expression.

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. National Research Council (U.S.). Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. (National Academies Press, 2011).

  2. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Verhaak, R.G. et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest. 123, 517–525 (2013).

    CAS  PubMed  Google Scholar 

  6. Tannock, I.F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. de Bono, J.S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scher, H.I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper, C.S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47, 367–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haffner, M.C. et al. Tracking the clonal origin of lethal prostate cancer. J. Clin. Invest. 123, 4918–4922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siegel, R.L., Miller, K.D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    Article  PubMed  Google Scholar 

  17. Huggins, C. & Hodges, C.V. Studies on prostate cancer 1: the effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297 (1941).

    CAS  Google Scholar 

  18. Kumar, A. et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc. Natl. Acad. Sci. USA 108, 17087–17092 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mosquera, J.M. et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 15, 1–10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qi, J. et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta, A. et al. Mash1 expression is induced in neuroendocrine prostate cancer upon the loss of Foxa2. Prostate 73, 582–589 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Pritchard, C.C. et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat. Commun. 5, 4988 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Hieronymus, H. et al. Copy number alteration burden predicts prostate cancer relapse. Proc. Natl. Acad. Sci. USA 111, 11139–11144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taylor, B.S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sahu, B. et al. FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res. 73, 1570–1580 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Arora, V.K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai, J., Myers, S.A., Lawrence, M.G., Odorico, D.M. & Clements, J.A. Direct progesterone receptor and indirect androgen receptor interactions with the kallikrein-related peptidase 4 gene promoter in breast and prostate cancer. Mol. Cancer Res. 7, 129–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Setlur, S.R. et al. Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J. Natl. Cancer Inst. 100, 815–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  32. Tomlins, S.A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Morrissey, C. et al. Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases. Clin. Exp. Metastasis 25, 377–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sedelaar, J.P. & Isaacs, J.T. Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone. Prostate 69, 1724–1729 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kokontis, J.M., Hay, N. & Liao, S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol. Endocrinol. 12, 941–953 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Schweizer, M.T. et al. Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. Sci. Transl. Med. 7, 269ra2 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tategu, M., Arauchi, T., Tanaka, R., Nakagawa, H. & Yoshida, K. Systems biology-based identification of crosstalk between E2F transcription factors and the Fanconi anemia pathway. Gene Regul. Syst. Bio. 1, 1–8 (2007).

    PubMed  PubMed Central  Google Scholar 

  39. Meier, D. & Schindler, D. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements. PLoS One 6, e22911 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan, H.L. et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 20, 890–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindberg, J. et al. The mitochondrial and autosomal mutation landscapes of prostate cancer. Eur. Urol. 63, 702–708 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Barbieri, C.E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robbins, C.M. et al. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res. 21, 47–55 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aryee, M.J. et al. DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases. Sci. Transl. Med. 5, 169ra10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Bruin, E.C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J. et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346, 256–259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakr, W.A. et al. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 8, 439–443 (1994).

    CAS  PubMed  Google Scholar 

  51. Garraway, L.A. & Sellers, W.R. Lineage dependency and lineage-survival oncogenes in human cancer. Nat. Rev. Cancer 6, 593–602 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, M.J. & Huang, T.T. The Fanconi anemia pathway in replication stress and DNA crosslink repair. Cell. Mol. Life Sci. 69, 3963–3974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roudier, M.P. et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum. Pathol. 34, 646–653 (2003).

    Article  PubMed  Google Scholar 

  54. Li, H. et al. & 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all of the men and their families who participated in this study. We thank A. McKenna and other members of the Nelson, Shendure and Vessella laboratories for helpful advice and assistance. We thank T. Taniguchi for helpful discussions. LNCaPAR cells were a kind gift from C. Sawyers (Memorial Sloan Kettering Cancer Center). We thank M. Roudier, J. Noteboom, J. Kho and all other members of the tissue-acquisition necropsy team for their hard work and dedication. This work was supported by a Stand Up To Cancer–Prostate Cancer Foundation Prostate Dream Team Translational Cancer Research Grant. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research (SU2C-AACR-DT0712) (B.M., N.S. and P.S.N.), and also by awards from the US National Institutes of Health: Pacific Northwest Prostate Cancer SPORE grant P50 CA097186 (P.S.N., B.M., L.D.T., R.L.V. and C.M.), P01 CA163227 (P.S.N., R.L.V. and C.M.), P01 CA85859 (R.L.V., C.M., M.F. and P.S.N.), US Department of Defense awards W81XWH-15-1-0562 and W81XWH-15-1-0430 (P.S.N., R.F.D., I.C., R.C. and N.S.) a Fred Hutchinson Cancer Research Center Solid Tumor Translational Research award (P.S.N., H.B. and B.M.) and the Prostate Cancer Foundation. J.S. and N.S. are supported by Prostate Cancer Foundation Young Investigator awards.

Author information

Authors and Affiliations

Authors

Contributions

A.K., T.W. and I.C. coordinated overall sequencing and bioinformatics analysis. I.C. and N.S. coordinated data deposition, assembly, figures and tables. R.G., R.E., I.C. and H.B. performed statistical analyses. A.K., I.C., R.C., R.F.D., T.W., N.D. and J.S. performed sequencing and analyses. L.D.T., M.F. and X.Z. coordinated central pathology review, FISH and immunohistochemistry studies. J.M.L. conducted gene-manipulation studies and growth assays. R.L.V., L.G.B. and C.M. coordinated clinical enrollment and tissue procurement. P.H.L., C.H., E.Y.Y., P.S.N. and B.M. enrolled patients and provided clinical insights. P.S.N., I.C., J.S. and A.K. wrote the manuscript, which all authors reviewed.

Corresponding author

Correspondence to Peter S Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 4395 kb)

Supplementary Table 1

CRPC Patient Clinical Data (XLSX 12 kb)

Supplementary Table 2

Patients, Tumor Sites, and Molecular Profiling Assays (XLSX 26 kb)

Supplementary Table 3

TMPRSS2-ERG Fusion by CGH or FISH (XLSX 10 kb)

Supplementary Table 4

MAF of mutations determined by WES (XLSX 2722 kb)

Supplementary Table 5

Target sequences for siRNAs (XLSX 8 kb)

Supplementary Table 6

Primer sequences for QRT-PCR (XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Coleman, I., Morrissey, C. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 22, 369–378 (2016). https://doi.org/10.1038/nm.4053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4053

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer