Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9

Abstract

Impaired erythropoiesis in the deletion 5q (del(5q)) subtype of myelodysplastic syndrome (MDS) has been linked to heterozygous deletion of RPS14, which encodes the ribosomal protein small subunit 14. We generated mice with conditional inactivation of Rps14 and demonstrated an erythroid differentiation defect that is dependent on the tumor suppressor protein p53 (encoded by Trp53 in mice) and is characterized by apoptosis at the transition from polychromatic to orthochromatic erythroblasts. This defect resulted in age-dependent progressive anemia, megakaryocyte dysplasia and loss of hematopoietic stem cell (HSC) quiescence. As assessed by quantitative proteomics, mutant erythroblasts expressed higher levels of proteins involved in innate immune signaling, notably the heterodimeric S100 calcium-binding proteins S100a8 and S100a9. S100a8—whose expression was increased in mutant erythroblasts, monocytes and macrophages—is functionally involved in the erythroid defect caused by the Rps14 deletion, as addition of recombinant S100a8 was sufficient to induce a differentiation defect in wild-type erythroid cells, and genetic inactivation of S100a8 expression rescued the erythroid differentiation defect of Rps14-haploinsufficient HSCs. Our data link Rps14 haploinsufficiency in del(5q) MDS to activation of the innate immune system and induction of S100A8-S100A9 expression, leading to a p53-dependent erythroid differentiation defect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rps14 haploinsufficiency results in a p53-mediated erythroid differentiation defect.
Figure 2: Rps14 haploinsufficiency affects HSPCs.
Figure 3: Reduced protein synthesis in Rps14-haploinsufficient cells.
Figure 4: S100a8 is upregulated in bone marrow of Rps14-haploinsufficient mice, is regulated by p53 and is necessary for the erythroid differentiation defect.
Figure 5: S100a8 is required for the erythroid-differentiation defect resulting from Rps14 haploinsufficiency.
Figure 6: S100A8+ cell frequency is increased in bone marrow from individuals with del(5q) MDS.

Similar content being viewed by others

References

  1. Ebert, B.L. Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia 23, 1252–1256 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Ebert, B.L. Molecular dissection of the 5q deletion in myelodysplastic syndrome. Semin. Oncol. 38, 621–626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Komrokji, R.S., Padron, E., Ebert, B.L. & List, A.F. Deletion 5q MDS: molecular and therapeutic implications. Best Pract. Res. Clin. Haematol. 26, 365–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Ebert, B.L. et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choesmel, V. et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109, 1275–1283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruggero, D. & Shimamura, A. Marrow failure: a window into ribosome biology. Blood 124, 2784–2792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGowan, K.A. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40, 963–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGowan, K.A. et al. Reduced ribosomal protein gene dosage and p53 activation in low-risk myelodysplastic syndrome. Blood 118, 3622–3633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsson, H. et al. Erythropoiesis in the Rps19-disrupted mouse: analysis of erythropoietin response and biochemical markers for Diamond-Blackfan anemia. Blood Cells Mol. Dis. 36, 259–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Dutt, S. et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117, 2567–2576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pellagatti, A. et al. Induction of p53 and upregulation of the p53 pathway in the human 5q- syndrome. Blood 115, 2721–2723 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, X., Hao, Q., Liao, J., Zhang, Q. & Lu, H. Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 32, 388–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Barlow, J.L. et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat. Med. 16, 59–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Raiser, D.M., Narla, A. & Ebert, B.L. The emerging importance of ribosomal dysfunction in the pathogenesis of hematologic disorders. Leuk. Lymphoma 55, 491–500 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Volarevic, S. et al. Proliferation but not growth blocked by conditional deletion of 40S ribosomal protein S6. Science 288, 2045–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Morrison, S.J., Wandycz, A.M., Akashi, K., Globerson, A. & Weissman, I.L. The aging of hematopoietic stem cells. Nat. Med. 2, 1011–1016 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Pang, W.W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. USA 108, 20012–20017 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Du, W. et al. Inflammation-mediated notch signaling skews Fanconi anemia hematopoietic stem cell differentiation. J. Immunol. 191, 2806–2817 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Signer, R.A., Magee, J.A., Salic, A. & Morrison, S.J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lajtha, L.G. & Oliver, R. A kinetic model of the erythron. Proc. R. Soc. Med. 54, 369–371 (1961).

    CAS  PubMed  Google Scholar 

  21. Karbstein, K. Inside the 40S ribosome assembly machinery. Curr. Opin. Chem. Biol. 15, 657–663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Strunk, B.S. & Karbstein, K. Powering through ribosome assembly. RNA 15, 2083–2104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strunk, B.S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333, 1449–1453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, X. et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J. Clin. Invest. 123, 4595–4611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Starczynowski, D.T. et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat. Med. 16, 49–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Bresnick, A.R., Weber, D.J. & Zimmer, D.B. S100 proteins in cancer. Nat. Rev. Cancer 15, 96–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, C. et al. A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway. Biochem. J. 422, 363–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Tan, M., Heizmann, C.W., Guan, K., Schafer, B.W. & Sun, Y. Transcriptional activation of the human S100A2 promoter by wild-type p53. FEBS Lett. 445, 265–268 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Mueller, A. et al. The calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity. J. Biol. Chem. 280, 29186–29193 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumor-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Bibikova, E. et al. TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19-deficient hematopoietic progenitors. Blood 124, 3791–3798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kordasti, S.Y. et al. IL-17–producing CD4+ T cells, pro-inflammatory cytokines and apoptosis are increased in low-risk myelodysplastic syndrome. Br. J. Haematol. 145, 64–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Su, S. et al. Inhibition of immature erythroid progenitor cell proliferation by macrophage inflammatory protein-1α by interacting mainly with a C-C chemokine receptor, CCR1. Blood 90, 605–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Frisch, B.J. et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119, 540–550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Ehrchen, J.M., Sunderkötter, C., Foell, D., Vogl, T. & Roth, J. The endogenous Toll-like receptor 4 agonist S100A8-S100A9 (calprotectin) as an innate amplifier of infection, autoimmunity and cancer. J. Leukoc. Biol. 86, 557–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Wei, Y. et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia 27, 2177–2186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang, K.H. et al. p62 is required for stem cell–progenitor retention through inhibition of IKK–NF-κB–Ccl4 signaling at the bone marrow macrophage–osteoblast niche. Cell Rep. 9, 2084–2097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Starczynowski, D.T. & Karsan, A. Deregulation of innate immune signaling in myelodysplastic syndromes is associated with deletion of chromosome arm 5q. Cell Cycle 9, 855–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Starczynowski, D.T. et al. TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer. J. Clin. Invest. 121, 4095–4105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynaud, D. et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20, 661–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rhyasen, G.W. et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 24, 90–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kristinsson, S.Y. et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J. Clin. Oncol. 29, 2897–2903 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Takizawa, H., Boettcher, S. & Manz, M.G. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119, 2991–3002 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Verschoor, C.P. et al. Blood CD33+HLA-DR myeloid-derived suppressor cells are increased with age and a history of cancer. J. Leukoc. Biol. 93, 633–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raaijmakers, M.H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fang, J. et al. Cytotoxic effects of bortezomib in myelodysplastic syndrome–acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood 120, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossi, D.J. et al. Deficiencies in DNA damage repair limit the function of hematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Means, R.T. Jr. Pathogenesis of the anemia of chronic disease: a cytokine-mediated anemia. Stem Cells 13, 32–37 (1995).

    Article  PubMed  Google Scholar 

  51. Sawanobori, M. et al. Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk. Res. 27, 583–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Jacobs-Helber, S.M. et al. Tumor necrosis factor–alpha expressed constitutively in erythroid cells or induced by erythropoietin has negative and stimulatory roles in normal erythropoiesis and erythroleukemia. Blood 101, 524–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schneider, R.K. et al. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 26, 509–520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shuga, J., Zhang, J., Samson, L.D., Lodish, H.F. & Griffith, L.G. In vitro erythropoiesis from bone marrow–derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc. Natl. Acad. Sci. USA 104, 8737–8742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gritsman, K. et al. Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110-α. J. Clin. Invest. 124, 1794–1809 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods 10, 634–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rappsilber, J. & Mann, M. Analysis of the topology of protein complexes using cross-linking and mass spectrometry. Cold Spring Harb. Protoc. 10.1101/pdb.prot4594 (2007).

  59. Beier, F. et al. Telomere-length analysis in monocytes and lymphocytes from patients with systemic lupus erythematosus using multicolor flow-FISH. Lupus 16, 955–962 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Beier, F. et al. Accelerated telomere shortening in glycosylphosphatidylinositol (GPI)-negative compared with GPI-positive granulocytes from patients with paroxysmal nocturnal hemoglobinuria (PNH) detected by proaerolysin flow-FISH. Blood 106, 531–533 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) (grant no. R01HL082945; B.L.E.), a Gabrielle's Angel Award (B.L.E.), a Leukemia and Lymphoma Society Scholar and Specialized Center of Research (SCOR) award (B.L.E.), the German Research Foundation (DFG1188/3-1; R.K.S.), a Max Eder fellowship provided by the German Cancer Aid (Deutsche Krebshilfe, grant no. 111750; R.K.S.), the Edward P. Evans Foundation (R.K.S.) and the German Cluster of Excellence program Regenerative Biology to Reconstructive Therapy (REBIRTH; to G.B.). We thank D. Haase (Georg-August-Universität Göttingen) for the cytogenetic (karyotype) analysis in individuals with del(5q) MDS. This work was supported by the confocal microscope facility, a core facility of the Interdisciplinary Center for Clinical Research (Interdisziplinäres Zentrum für klinische Forschung; IZKF) Aachen, within the Faculty of Medicine at RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Contributions

R.K.S., R.C.L., S.A.C. and B.L.E. designed experiments; R.K.S., M.S., R. Kramann, M.V.F., C.E.J., C.H., F.B., M.C.C., E.C., C.S.W., C.D.N. and L.P.C. performed experiments and analyzed data; F.B., T.H.B., U.G., U.P., R. Knüchel and G.B. collected patient samples and clinical information, reviewed bone marrow biopsies and analyzed data; R.K.S. and B.L.E. wrote the manuscript; and all authors provided critical reviews of the manuscript.

Corresponding author

Correspondence to Benjamin L Ebert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–2 (PDF 5144 kb)

Supplementary Table 3

Samples included in the proteomic analysis (XLSX 737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, R., Schenone, M., Ferreira, M. et al. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat Med 22, 288–297 (2016). https://doi.org/10.1038/nm.4047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing