Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice

Abstract

Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI)1,2,3,4,5,6. Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders7, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type– and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ABT263 has senolytic activity in cell culture and mice.
Figure 2: ABT263 kills SCs by apoptosis.
Figure 3: SC clearance by treatment with ABT263 or GCV rejuvenates HSCs after TBI.
Figure 4: SC clearance by ABT263 treatment rejuvenates HSCs and MuSCs in normally aged mice.

Similar content being viewed by others

References

  1. Le, O.N. et al. Ionizing radiation–induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9, 398–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Richardson, R.B. Ionizing radiation and aging: rejuvenating an old idea. Aging (Albany, NY) 1, 887–902 (2009).

    Article  CAS  Google Scholar 

  4. Shao, L. et al. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood 123, 3105–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Deursen, J.M. The role of senescent cells in aging. Nature 509, 439–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baker, D.J. et al. Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayflick, L. & Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  10. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burd, C.E. et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorrentino, J.A. et al. p16INK4a reporter mice reveal age-promoting effects of environmental toxicants. J. Clin. Invest. 124, 169–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Janzen, V. et al. Stem cell aging modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Coppé, J.P., Desprez, P.Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Caserta, T.M., Smith, A.N., Gultice, A.D., Reedy, M.A. & Brown, T.L. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8, 345–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Cory, S. & Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Czabotar, P.E., Lessene, G., Strasser, A. & Adams, J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Childs, B.G., Baker, D.J., Kirkland, J.L., Campisi, J. & van Deursen, J.M. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Souers, A.J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Lessene, G. et al. Structure-guided design of a selective Bcl-XL inhibitor. Nat. Chem. Biol. 9, 390–397 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Beerman, I., Maloney, W.J., Weissmann, I.L. & Rossi, D.J. Stem cells and the aging hematopoietic system. Curr. Opin. Immunol. 22, 500–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geiger, H., de Haan, G. & Florian, M.C. The aging hematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Shao, L., Luo, Y. & Zhou, D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid. Redox Signal. 20, 1447–1462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fleenor, C.J., Marusyk, A. & DeGregori, J. Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 9, 3005–3011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geiger, H., Rennebeck, G. & Van Zant, G. Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc. Natl. Acad. Sci. USA 102, 5102–5107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harfouche, G. & Martin, M.T. Response of normal stem cells to ionizing radiation: a balance between homeostasis and genomic stability. Mutat. Res. 704, 167–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Testa, N.G., Hendry, J.H. & Molineux, G. Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res. 5, 101–110 (1985).

    CAS  PubMed  Google Scholar 

  31. Gale, R.P. in Hematopoiesis: Long-term Effects of Chemotherapy and Radiation (eds. Testa, N.G. & Gale, R.P.) 63–73 (Marcel Dekker, Inc., New York, 1988).

  32. Lohrmann, H.P.E. & Schreml, W. in Hematopoiesis: Long-term Effects of Chemotherapy and Radiation (eds. Testa, N.G. & Gale, R.P.) 325–337 (Marcel Dekker, Inc., New York, 1988).

  33. Carbonneau, C.L. et al. Ionizing radiation-induced expression of Ink4a/Arf in murine bone marrow–derived stromal cell populations interferes with bone marrow homeostasis. Blood 119, 717–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Blau, H.M., Cosgrove, B.D. & Ho, A.T. The central role of muscle stem cells in regenerative failure with aging. Nat. Med. 21, 854–862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudin, C.M. et al. Phase 2 study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res. 18, 3163–3169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Le Couteur, D.G., McLachlan, A.J., Quinn, R.J., Simpson, S.J. & de Cabo, R. Aging biology and novel targets for drug discovery. J. Gerontol. A Biol. Sci. Med. Sci. 67, 168–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Jozefczuk, J., Drews, K. & Adjaye, J. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J. Vis. Exp. 64, 3854 (2012).

    Google Scholar 

  38. Wang, Y., Scheiber, M.N., Neumann, C., Calin, G.A. & Zhou, D. MicroRNA regulation of ionizing radiation–induced premature senescence. Int. J. Radiat. Oncol. Biol. Phys. 81, 839–848 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Finney, D.J. Probit Analysis (Cambridge University Press, Cambridge, UK, 1952).

  40. Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated β-galactosidase (SA–β-gal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Y., Meng, A. & Zhou, D. Inhibition of phosphatidylinostol 3-kinase uncouples H2O2-induced senescent phenotype and cell cycle arrest in normal human diploid fibroblasts. Exp. Cell Res. 298, 188–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Y., Schulte, B.A., LaRue, A.C., Ogawa, M. & Zhou, D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107, 358–366 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cerletti, M., Jang, Y.C., Finley, L.W., Haigis, M.C. & Wagers, A.J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. van Zant (University of Kentucky) for FBMD-1 stromal cells. This study was supported by the US National Institutes of Health (NIH) grants R01 CA122023 (D.Z.), R01 AI080421 (D.Z.), P20 GM109005 (M.H.-J. and D.Z.) and R37 AG009909 (J. Campisi); a grant from the Edward P. Evans Foundation (D.Z. and M.H.-J.); National Natural Science Foundation of China grant no. 81129020 (D.Z.); China National Program on Key Basic Research Project 2011CB964800-G (A.M.); and an Arkansas Research Alliance Scholarship from the Arkansas Science & Technology Authority (D.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J. Chang and Y.W. designed, performed and analyzed most of the experiments; L.S., R.-M.L. and M.D. designed, performed and analyzed some experiments; W.F., Y.L., X.W., N.A.-B., K.K. and K.J. performed experiments; N.E.S. interpreted data and revised the manuscript; J. Campisi provided mice, designed the study, analyzed and interpreted data, and revised the manuscript; U.P. and M.H.-J. interpreted data and revised the manuscript; S.D. and A.M. designed the study, analyzed and interpreted data, and revised the manuscript; D.Z. conceived, designed and supervised the study, analyzed and interpreted data, and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Daohong Zhou.

Ethics declarations

Competing interests

J. Chang, Y.W., L.S., W.F., Y.L., and D.Z. are inventors of a pending patent application for use of Bcl-2 and/or Bcl-xL inhibitors as anti-aging agents. J. Campisi and D.Z. are co-founders and advisors of Cenexys/Unity that develops senolytic drugs.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 & Supplementary Tables 1–5 (PDF 2231 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Wang, Y., Shao, L. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22, 78–83 (2016). https://doi.org/10.1038/nm.4010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing