Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection

Abstract

The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes1,2,3,4,5,6. Here we report the structure-based development of an H1 HA stem–only immunogen that confers heterosubtypic protection in mice and ferrets. Six iterative cycles of structure-based design (Gen1–Gen6) yielded successive H1 HA stabilized-stem (HA–SS) immunogens that lack the immunodominant head domain. Antigenic characterization, determination of two HA–SS crystal structures in complex with stem-specific monoclonal antibodies and cryo-electron microscopy analysis of HA–SS on ferritin nanoparticles (H1–SS–np) confirmed the preservation of key structural elements. Vaccination of mice and ferrets with H1–SS–np elicited broadly cross-reactive antibodies that completely protected mice and partially protected ferrets against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 neutralizing activity in vitro. Passive transfer of immunoglobulin from H1–SS–np–immunized mice to naive mice conferred protection against H5N1 challenge, indicating that vaccine-elicited HA stem–specific antibodies can protect against diverse group 1 influenza strains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based removal of the HA head allows for preservation of stem immunogen antigenicity.
Figure 2: Trimeric, but not nanoparticle, stem immunogens display HA stem splaying.
Figure 3: Immune responses of immunized mice and ferrets.
Figure 4: Immune protection conferred against lethal H5 2004 VN influenza virus challenge in mice and ferrets.

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ekiert, D.C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Dreyfus, C. et al. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamura, G. et al. An in vivo human plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 14, 93–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Tan, K., Liu, J.H., Wang, J.H., Shen, S. & Lu, M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc. Natl. Acad. Sci. USA 94, 12303–12308 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okuno, Y., Isegawa, Y., Sasao, F. & Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67, 2552–2558 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dreyfus, C., Ekiert, D.C. & Wilson, I.A. Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 hemagglutinin. J. Virol. 87, 7149–7154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Novak, E.J. & Rabinovitch, P.S. Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/Fura Red fluorescence ratios. Cytometry 17, 135–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Lingwood, D. et al. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489, 566–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O'Hagan, D.T., Ott, G.S., Van Nest, G., Rappuoli, R. & Del Giudice, G. The history of MF59 adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 12, 13–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Wei, C.J. et al. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci. Transl. Med. 2, 24ra21 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. DiLillo, D.J., Tan, G.S., Palese, P. & Ravetch, J.V. Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat. Med. 20, 143–151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jegaskanda, S. et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J. Immunol. 190, 1837–1848 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Jegaskanda, S., Weinfurter, J.T., Friedrich, T.C. & Kent, S.J. Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J. Virol. 87, 5512–5522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jegaskanda, S., Reading, P.C. & Kent, S.J. Influenza-specific antibody-dependent cellular cytotoxicity: toward a universal influenza vaccine. J. Immunol. 193, 469–475 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sagawa, H., Ohshima, A., Kato, I., Okuno, Y. & Isegawa, Y. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J. Gen. Virol. 77, 1483–1487 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Steel, J. et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1, e00018-10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bommakanti, G. et al. Design of an HA2-based Escherichia coli–expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl. Acad. Sci. USA 107, 13701–13706 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bommakanti, G. et al. Design of Escherichia coli–expressed stalk domain immunogens of H1N1 hemagglutinin that protect mice from lethal challenge. J. Virol. 86, 13434–13444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, Y., Welsh, J.P. & Swartz, J.R. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc. Natl. Acad. Sci. USA 111, 125–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Mallajosyula, V.V.A. et al. Influenza hemagglutinin stem–fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc. Natl. Acad. Sci. USA 111, E2514–E2523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krammer, F. et al. Assessment of influenza virus hemagglutinin stalk–based immunity in ferrets. J. Virol. 88, 3432–3442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krammer, F., Pica, N., Hai, R., Margine, I. & Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87, 6542–6550 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kong, W.P. et al. Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proc. Natl. Acad. Sci. USA 103, 15987–15991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiang, Z., Soto, C.S. & Honig, B. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proc. Natl. Acad. Sci. USA 99, 7432–7437 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiang, Z. & Honig, B. Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 311, 421–430 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kleywegt, G.J., Zou, J.Y., Kjeldgaard, M. & Jones, T.A. in International Tables for Crystallography Vol. F (eds. Rossmann, M.G. & Arnold, E.) 353–367 (Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001).

  32. Kellogg, E.H., Leaver-Fay, A. & Baker, D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79, 830–838 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Pettersen, E.F. et al. UCSF chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Wei, C.J. et al. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Sci. Transl. Med. 4, 147ra114 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Ofek, G. et al. Structure and mechanistic analysis of the anti–human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol. 78, 10724–10737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Majeed, S. et al. Enhancing protein crystallization through precipitant synergy. Structure 11, 1061–1070 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  38. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  43. Scheres, S.H.W. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo, X.M. et al. Engineering human hematopoietic stem and progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood 113, 1422–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Whittle, J.R.R. et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J. Virol. 88, 4047–4057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei, C.J. et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060–1064 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals 8th edn. (National Academies Press, Washington, DC, USA, 2011).

Download references

Acknowledgements

We thank A. Taylor, H. Bao, J.P. Todd and C. Chiedi for help with the animal studies, U. Baxa for EM studies, K. Dai and X. Chen for technical support and B. Hartman for manuscript preparation. We thank M.C. Nason for excellent statistical advice and support. We also thank K. Modjarrad and laboratory members for helpful discussions. This work was supported by the Intramural Research Program of the Vaccine Research Center and the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, US National Institutes of Health. X-ray data were collected at the SER-CAT 22-BM beamline at the Advanced Photon Source (APS), Argonne National Laboratory. Use of APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science under contract no. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

J.C.B., C.-J.W., and G.J.N. developed the concept of the HA–SS; J.C.B. designed the HA–SS constructs; H.M.Y., J.C.B., P.M.M., C.-J.W., G.J.N., J.R.M. and B.S.G. designed the research studies; H.M.Y., J.C.B., M.K., W.-P.K., L.W., J.R.G., M.G.J., Y.Z., P.M.M., C.-J.W., D.L., S.M.M., A.K.H., P.D.K., G.J.N., J.R.M. and B.S.G. performed the research, analyzed data and discussed the results and implications; S.S.R. and H.A. assisted in animal studies; Y.O. isolated and provided C179 mAb; and J.C.B., H.M.Y., P.M.M., C.-J.W., M.K., P.D.K., J.R.M., G.J.N. and B.S.G. wrote the paper.

Corresponding authors

Correspondence to Gary J Nabel or Barney S Graham.

Ethics declarations

Competing interests

The authors declare that an intellectual property application has been filed by the US National Institutes of Health on the basis of data presented in this paper.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 3985 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassine, H., Boyington, J., McTamney, P. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat Med 21, 1065–1070 (2015). https://doi.org/10.1038/nm.3927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing