Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

APP intracellular domain–WAVE1 pathway reduces amyloid-β production

Abstract

An increase in amyloid-β (Aβ) production is a major pathogenic mechanism associated with Alzheimer's disease (AD)1,2, but little is known about possible homeostatic control of the amyloidogenic pathway. Here we report that the amyloid precursor protein (APP) intracellular domain (AICD) downregulates Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 1 (WAVE1 or WASF1) as part of a negative feedback mechanism to limit Aβ production. The AICD binds to the Wasf1 promoter, negatively regulates its transcription and downregulates Wasf1 mRNA and protein expression in Neuro 2a (N2a) cells. WAVE1 interacts and colocalizes with APP in the Golgi apparatus. Experimentally reducing WAVE1 in N2a cells decreased the budding of APP-containing vesicles and reduced cell-surface APP, thereby reducing the production of Aβ. WAVE1 downregulation was observed in mouse models of AD. Reduction of Wasf1 gene expression dramatically reduced Aβ levels and restored memory deficits in a mouse model of AD. A decrease in amounts of WASF1 mRNA was also observed in human AD brains, suggesting clinical relevance of the negative feedback circuit involved in homeostatic regulation of Aβ production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Downregulation of WAVE1 expression by overexpression of APP or AICD.
Figure 2: A reduction in WAVE1 expression leads to reduced levels of Aβ.
Figure 3: WAVE1 facilitates budding of APP-containing vesicles from the Golgi apparatus.
Figure 4: Behavioral consequences and clinical relevance of WAVE1 downregulation and a model for negative feedback regulation of Aβ production.

Similar content being viewed by others

References

  1. Tanzi, R.E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Ballard, C. et al. Alzheimer's disease. Lancet 377, 1019–1031 (2011).

    Article  PubMed  Google Scholar 

  3. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Soderling, S.H. et al. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc. Natl. Acad. Sci. USA 100, 1723–1728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M. & Kirschner, M.W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, Y. et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814–817 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki, T. et al. Molecular cloning of a novel apoptosis-related gene, human Nap1 (NCKAP1), and its possible relation to Alzheimer disease. Genomics 63, 246–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Lo, A.C., Haass, C., Wagner, S.L., Teplow, D.B. & Sisodia, S.S. Metabolism of the “Swedish” amyloid precursor protein variant in Madin-Darby canine kidney cells. J. Biol. Chem. 269, 30966–30973 (1994).

    CAS  PubMed  Google Scholar 

  11. Müller, T., Meyer, H.E., Egensperger, R. & Marcus, K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog. Neurobiol. 85, 393–406 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Haass, C., Kaether, C., Thinakaran, G. & Sisodia, S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2, a006270 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cao, X. & Sudhof, T.C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Goodger, Z.V. et al. Nuclear signaling by the APP intracellular domain occurs predominantly through the amyloidogenic processing pathway. J. Cell Sci. 122, 3703–3714 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Belyaev, N.D. et al. The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. J. Biol. Chem. 285, 41443–41454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flammang, B. et al. Evidence that the amyloid-β protein precursor intracellular domain, AICD, derives from β-secretase-generated C-terminal fragment. J. Alzheimers Dis. 30, 145–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Pardossi-Piquard, R. & Checler, F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J. Neurochem. 120 (suppl. 1), 109–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Belyaev, N.D., Nalivaeva, N.N., Makova, N.Z. & Turner, A.J. Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep. 10, 94–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Jankowsky, J.L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Rajendran, L. & Annaert, W. Membrane trafficking pathways in Alzheimer's disease. Traffic 13, 759–770 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Suetsugu, S. & Gautreau, A. Synergistic BAR-NPF interactions in actin-driven membrane remodeling. Trends Cell Biol. 22, 141–150 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Anitei, M. & Hoflack, B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat. Cell Biol. 14, 11–19 (2012).

    Article  CAS  Google Scholar 

  23. Webster, J.A. et al. Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet. 84, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ceglia, I., Kim, Y., Nairn, A.C. & Greengard, P. Signaling pathways controlling the phosphorylation state of WAVE1, a regulator of actin polymerization. J. Neurochem. 114, 182–190 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lesné, S. et al. NMDA receptor activation inhibits α-secretase and promotes neuronal amyloid-β production. J. Neurosci. 25, 9367–9377 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cirrito, J.R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Konietzko, U. AICD nuclear signaling and its possible contribution to Alzheimer's disease. Curr. Alzheimer Res. 9, 200–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Nalivaeva, N.N. & Turner, A.J. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett. 587, 2046–2054 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Gasparini, L. et al. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci. 21, 2561–2570 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He, G. et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease. Nature 467, 95–98 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai, D. et al. Presenilin-1 uses phospholipase D1 as a negative regulator of β-amyloid formation. Proc. Natl. Acad. Sci. USA 103, 1941–1946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai, D. et al. Presenilin-1 regulates intracellular trafficking and cell surface delivery of β-amyloid precursor protein. J. Biol. Chem. 278, 3446–3454 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Suetsugu, S., Yamazaki, D., Kurisu, S. & Takenawa, T. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev. Cell 5, 595–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Thinakaran, G. et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Buxbaum, J.D. et al. Processing of Alzheimer β/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. USA 87, 6003–6006 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soderling, S.H. et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nat. Cell Biol. 4, 970–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Thinakaran, G., Teplow, D.B., Siman, R., Greenberg, B. & Sisodia, S.S. Metabolism of the “Swedish” amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the “beta-secretase” site occurs in the Golgi apparatus. J. Biol. Chem. 271, 9390–9397 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Urmoneit, B., Turner, J. & Dyrks, T. Pulse-chase experiments revealed β-secretase cleavage from immature full-length amyloid precursor protein harboring the Swedish mutation. Implications for distinct pathways. J. Mol. Neurosci. 11, 141–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Gresack, J.E., Kerr, K.M. & Frick, K.M. Life-long environmental enrichment differentially affects the mnemonic response to estrogen in young, middle-aged, and aged female mice. Neurobiol. Learn. Mem. 88, 393–408 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Harburger, L.L., Lambert, T.J. & Frick, K.M. Age-dependent effects of environmental enrichment on spatial reference memory in male mice. Behav. Brain Res. 185, 43–48 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grants AG009464 (to P.G.) and AG047270 (to A.C.N.)), the Fisher Center for Alzheimer's Research Foundation (to P.G.) and the US Department of Defense–USAMRAA (grants W81XWH-09-1-0392 (to Y.K.) and W81XWH-09-1-0402 (to P.G.)). J.-H.A. was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2010-0027945). We thank W. Luo for protocols for metabolic pulse labeling and chase and organelle fractionation; W.J. Netzer (The Rockefeller University, New York, New York, USA) for sAPPβ antibody and mNotchΔE plasmid; D. Cai for the budding-assay protocol; and S.S. Sisodia for the pCB6-APP695wt and pCB6-APP695swe plasmids. We also thank A. Schaeffer, P. Kurup, P. Lombroso, D. Tampellini, G. Gouras and R. Moir for discussion or sharing of materials. We acknowledge R. Norinsky and The Rockefeller University Transgenics Services Laboratory for their excellent in vitro fertilization services, Z. Dong for research assistance and E. Griggs for graphics.

Author information

Authors and Affiliations

Authors

Contributions

Y.K., I.C., A.C.N. and P.G. designed experiments and wrote the manuscript. I.C. and Y.K. analyzed WAVE1 expression in N2a cells and mice. I.C. carried out ChIP and immunohistochemistry assays of WAVE1. J.-H.A. constructed plasmids including AICD-3×Flag and performed real-time PCR. I.C. and J.-H.A. performed promoter-luciferase assays. V.B. and I.C. analyzed AICD and Aβ expression. Y.K. and I.C. performed metabolic pulse labeling and chase experiments and in vitro budding assays. C.R. analyzed WAVE1 expression in human samples. X.Z. prepared mice. J.G. performed behavioral experiments. G.M., M.B., S.M.S. and Y.K. performed immunocytochemical experiments and data analysis.

Corresponding author

Correspondence to Yong Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceglia, I., Reitz, C., Gresack, J. et al. APP intracellular domain–WAVE1 pathway reduces amyloid-β production. Nat Med 21, 1054–1059 (2015). https://doi.org/10.1038/nm.3924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing