Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophils promote Alzheimer's disease–like pathology and cognitive decline via LFA-1 integrin

Abstract

Inflammation is a pathological hallmark of Alzheimer's disease, and innate immune cells have been shown to contribute to disease pathogenesis. In two transgenic models of Alzheimer's disease (5xFAD and 3xTg-AD mice), neutrophils extravasated and were present in areas with amyloid-β (Aβ) deposits, where they released neutrophil extracellular traps (NETs) and IL-17. Aβ42 peptide triggered the LFA-1 integrin high-affinity state and rapid neutrophil adhesion to integrin ligands. In vivo, LFA-1 integrin controlled neutrophil extravasation into the CNS and intraparenchymal motility. In transgenic Alzheimer's disease models, neutrophil depletion or inhibition of neutrophil trafficking via LFA-1 blockade reduced Alzheimer's disease–like neuropathology and improved memory in mice already showing cognitive dysfunction. Temporary depletion of neutrophils for 1 month at early stages of disease led to sustained improvements in memory. Transgenic Alzheimer's disease model mice lacking LFA-1 were protected from cognitive decline and had reduced gliosis. In humans with Alzheimer's disease, neutrophils adhered to and spread inside brain venules and were present in the parenchyma, along with NETs. Our results demonstrate that neutrophils contribute to Alzheimer's disease pathogenesis and cognitive impairment and suggest that the inhibition of neutrophil trafficking may be beneficial in Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neutrophils adhere in brain vessels and migrate into the parenchyma during the early stage of disease.
Figure 2: Neutrophils traffic into the brain and Aβ triggers neutrophil adhesion.
Figure 3: LFA-1 integrin is necessary for neutrophil trafficking into the brain in Alzheimer's disease models.
Figure 4: Neutrophil depletion improves cognitive function and reduces Alzheimer's disease-like pathology in 3xTg-AD mice.
Figure 5: LFA-1 integrin blockade or genetic deficiency is protective in 3xTg-AD mice.
Figure 6: Neutrophils adhere in brain vessels, are present in the parenchyma and produce NETs in the brains of individuals with Alzheimer's disease.

Similar content being viewed by others

References

  1. Querfurth, H.W. & LaFerla, F.M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    CAS  PubMed  Google Scholar 

  2. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  4. Schwartz, M., Kipnis, J., Rivest, S. & Prat, A. How do immune cells support and shape the brain in health, disease, and aging? J. Neurosci. 33, 17587–17596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Czirr, E. & Wyss-Coray, T. The immunology of neurodegeneration. J. Clin. Invest. 122, 1156–1163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krstic, D. & Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol. 9, 25–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Kitazawa, M., Oddo, S., Yamasaki, T.R., Green, K.N. & LaFerla, F.M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 8843–8853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. in t' Veld, B.A. et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N. Engl. J. Med. 345, 1515–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Szekely, C.A. & Zandi, P.P. Non-steroidal anti-inflammatory drugs and Alzheimer's disease: the epidemiological evidence. CNS Neurol. Disord. Drug Targets 9, 132–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Block, M.L., Zecca, L. & Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet 358, 461–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Prokop, S., Miller, K.R. & Heppner, F.L. Microglia actions in Alzheimer's disease. Acta Neuropathol. 126, 461–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi, B., Angiari, S., Zenaro, E., Budui, S.L. & Constantin, G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J. Leukoc. Biol. 89, 539–556 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Savage, M.J. et al. Cathepsin G: localization in human cerebral cortex and generation of amyloidogenic fragments from the beta-amyloid precursor protein. Neuroscience 60, 607–619 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Togo, T. et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Subramanian, S. et al. CCR6: a biomarker for Alzheimer's-like disease in a triple transgenic mouse model. J. Alzheimers Dis. 22, 619–629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baik, S.H. et al. Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol. Aging 35, 1286–1292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michaud, J.P., Bellavance, M.A., Préfontaine, P. & Rivest, S. Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta. Cell Reports 5, 646–653 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B.P. & LaFerla, F.M. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiol. Aging 24, 1063–1070 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Billings, L.M., Oddo, S., Green, K.N., McGaugh, J.L. & LaFerla, F.M. Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45, 675–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Janelsins, M.C. et al. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice. J. Neuroinflammation 2, 23 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Green, K.N., Billings, L.M., Roozendaal, B., McGaugh, J.L. & LaFerla, F.M. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer's disease. J. Neurosci. 26, 9047–9056 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mastrangelo, M.A. & Bowers, W.J. Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice. BMC Neurosci. 9, 81 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Phillipson, M. & Kubes, P. The neutrophil in vascular inflammation. Nat. Med. 17, 1381–1390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kolaczkowska, E. & Kubes, P. P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siffrin, V. et al. In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. DiStasi, M.R. & Ley, K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol. 30, 547–556 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bolton, S.J., Anthony, D.C. & Perry, V.H. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86, 1245–1257 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Kalaria, R.N. The blood-brain barrier and cerebrovascular pathology in Alzheimer's disease. Ann. NY Acad. Sci. 893, 113–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Gautam, N., Herwald, H., Hedqvist, P. & Lindbom, L. Signaling via beta(2) integrins triggers neutrophil-dependent alteration in endothelial barrier function. J. Exp. Med. 191, 1829–1839 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryu, J.K. & McLarnon, J.G. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer's disease brain. J. Cell. Mol. Med. 13, 2911–2925 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Silva, M.T. Neutrophils and macrophages work in concert as inducers and effectors of adaptive immunity against extracellular and intracellular microbial pathogens. J. Leukoc. Biol. 87, 805–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 427–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia-Romo, G.S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Allen, C. et al. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J. Immunol. 189, 381–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Baldwin, K.J. & Hogg, J.P. Progressive multifocal leukoencephalopathy in patients with multiple sclerosis. Curr. Opin. Neurol. 26, 318–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Sterniczuk, R., Antle, M.C., Laferla, F.M. & Dyck, R.H. Characterization of the 3xTg-AD mouse model of Alzheimer's disease: part 2. Behavioral and cognitive changes. Brain Res. 1348, 149–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Halagappa, V.K. et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 26, 212–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Nakashima, A.S., Oddo, S., Laferla, F.M. & Dyck, R.H. Experience-dependent regulation of vesicular zinc in male and female 3xTg-AD mice. Neurobiol. Aging 31, 605–613 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Robertson, R.T. et al. Amyloid-beta expression in retrosplenial cortex of triple transgenic mice: relationship to cholinergic axonal afferents from medial septum. Neuroscience 164, 1334–1346 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. España, J. et al. Intraneuronal β-Amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer's disease transgenic mice. Biol. Psychiatry 67, 513–521 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Kim, H.J. et al. Selective neuronal degeneration induced by soluble oligomeric amyloid beta-protein. FASEB J. 17, 118–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Bolomini-Vittori, M. et al. Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module. Nat. Immunol. 10, 185–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Lundqvist, H. & Dahlgren, C. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils. Free Radic. Biol. Med. (Paris) 20, 785–792 (1996).

    Article  CAS  Google Scholar 

  54. Fumagalli, L. et al. Class I phosphoinositide-3-kinases and SRC kinases play a nonredundant role in regulation of adhesion-independent and -dependent neutrophil reactive oxygen species generation. J. Immunol. 190, 3648–3660 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Flister, M.J. et al. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-κB and Prox1. Blood 115, 418–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kook, S.-Y. et al. Aβ1–42-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca2+-calcineurin signaling. J. Neurosci. 32, 8845–8854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohira, K., Takeuchi, R., Iwanaga, T. & Miyakawa, T. Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice. Mol. Brain 6, 43 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kawarabayashi, T. et al. Age-dependent changes in brain, CSF, and plasma amyloid β protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. 21, 372–381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Laudanna (University of Verona) for providing the reagents to measure LFA-1 integrin affinity in human neutrophils. This work was supported by funding under the European Research Council grant 261079-NEUROTRAFFICKING (G.C.), Fondazione Cariverona (G.C.) and the European Community FP7 grant 282095-TARKINAID (G.B.). S.D. received a fellowship from the Fondazione Italiana Sclerosi Multipla, Genoa, Italy.

Author information

Authors and Affiliations

Authors

Contributions

G.C., E.Z and E.P. designed the experiments and analyzed the data. E.Z., E.P., V.D.B., G.P., S.B., E.T., B.R., S.A., S.D., A.M., L.M. and T.C. performed the experiments. G.B. and S.N. provided expertise in neutrophil extracellular traps. D.C. provided 129/C57BL6 mice. G.T. and L.C. analyzed the proximity between amyloid plaques and MPO+ cells. B.B. provided human tissue samples. E.Z. and G.C. wrote the paper.

Corresponding author

Correspondence to Gabriela Constantin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 9790 kb)

Source data to Supplementary Figures 1–6

Neutrophils migrate into the brain parenchyma of 5xFAD mice. (MOV 1658 kb)

Neutrophils interact with the vascular endothelium in 5xFAD mice. (MOV 1672 kb)

Neutrophils show strong directional movement in the brain parenchyma of 5xFAD mice. (MOV 1589 kb)

Neutrophils show non-directional movement inside the brain parenchyma. (MOV 815 kb)

Neutrophil infiltration into the brain parenchyma occurs preferentially in Aβ-rich areas. (MOV 2004 kb)

Vascular Aβ deposition promotes neutrophil adhesion in cortical vessels of 5xFAD mice. (MOV 2279 kb)

LFA-1 integrin is necessary for neutrophil infiltration into the brain parenchyma of 5xFAD mice. (MOV 2221 kb)

Blocking LFA-1 integrin inhibits the motility of neutrophils within the brain parenchyma of 5xFAD mice. (MOV 1616 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenaro, E., Pietronigro, E., Bianca, V. et al. Neutrophils promote Alzheimer's disease–like pathology and cognitive decline via LFA-1 integrin. Nat Med 21, 880–886 (2015). https://doi.org/10.1038/nm.3913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing