Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of amyloid-β plaque formation by α-synuclein

Abstract

Amyloid-β (Aβ) plaques and α-synuclein (α-syn)-rich Lewy bodies are the major neuropathological hallmarks of Alzheimer's disease (AD) and Parkinson's disease, respectively. An overlap of pathologies is found in most individuals with dementia with Lewy bodies (DLB)1 and in more than 50% of AD cases2. Their brains display substantial α-syn accumulation not only in Lewy bodies, but also in dystrophic neurites decorating Aβ plaques2,3,4. Several studies report binding and coaggregation of Aβ and α-syn5,6,7, yet the precise role of α-syn in amyloid plaque formation remains elusive. Here we performed intracerebral injections of α-syn–containing preparations into amyloid precursor protein (APP) transgenic mice (expressing APP695KM670/671NL and PSEN1L166P under the control of the neuron-specific Thy-1 promoter; referred to here as 'APPPS1'). Unexpectedly, α-syn failed to cross-seed Aβ plaques in vivo, but rather it inhibited plaque formation in APPPS1 mice coexpressing SNCAA30P (referred to here as 'APPPS1 × [A30P]aSYN' double-transgenic mice). This was accompanied by increased Aβ levels in cerebrospinal fluid despite unchanged overall Aβ levels. Notably, the seeding activity of Aβ-containing brain homogenates was considerably reduced by α-syn, and Aβ deposition was suppressed in grafted tissue from [A30P]aSYN transgenic mice. Thus, we conclude that an interaction between Aβ and α-syn leads to inhibition of Aβ deposition and to reduced plaque formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: α-syn–containing preparations do not induce Aβ plaque formation in 6-week-old APPPS1 × Thy1-GFP transgenic mice.
Figure 2: Reduced hippocampal plaque load in APPPS1 × [A30P]aSYN transgenic mice.
Figure 3: Aβ seeding is decreased by α-syn.
Figure 4: Suppressed Aβ deposition and reduced Aβ-42 fibril formation in the presence of α-syn.

Similar content being viewed by others

References

  1. McKeith, I. et al. Dementia with Lewy bodies. Lancet Neurol. 3, 19–28 (2004).

    Article  PubMed  Google Scholar 

  2. Hamilton, R.L. Lewy bodies in Alzheimer's disease: a neuropathological review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol. 10, 378–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Takeda, A. et al. Abnormal accumulation of NACP/α-synuclein in neurodegenerative disorders. Am. J. Pathol. 152, 367–372 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McKeith, I.G. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65, 1863–1872 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Jensen, P.H. et al. Binding of Aβ to α- and β-synucleins: identification of segments in α-synuclein/NAC precursor that bind Aβ and NAC. Biochem. J. 323, 539–546 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jensen, P.H., Sorensen, E.S., Petersen, T.E., Gliemann, J. & Rasmussen, L.K. Residues in the synuclein consensus motif of the α-synuclein fragment, NAC, participate in transglutaminase-catalysed cross-linking to Alzheimer-disease amyloid βA4 peptide. Biochem. J. 310, 91–94 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsigelny, I.F. et al. Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases. PLoS ONE 3, e3135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uéda, K. et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 11282–11286 (1993).

    Article  PubMed  Google Scholar 

  9. Lashuel, H.A., Overk, C.R., Oueslati, A. & Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kane, M.D. et al. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein–transgenic mice. J. Neurosci. 20, 3606–3611 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Luk, K.C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luk, K.C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giasson, B.I. et al. Initiation and synergistic fibrillization of tau and α-synuclein. Science 300, 636–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Waxman, E.A. & Giasson, B.I. Induction of intracellular tau aggregation is promoted by α-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J. Neurosci. 31, 7604–7618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, J.L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Radde, R. et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Neumann, M. et al. Misfolded proteinase K-resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies. J. Clin. Invest. 110, 1429–1439 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Volpicelli-Daley, L.A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94, 13287–13292 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. McCarter, J.F. et al. Clustering of plaques contributes to plaque growth in a mouse model of Alzheimer's disease. Acta Neuropathol. 126, 179–188 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heyman, A. et al. Comparison of Lewy body variant of Alzheimer's disease with pure Alzheimer's disease: consortium to establish a registry for Alzheimer's disease, part XIX. Neurology 52, 1839–1844 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kallhoff, V., Peethumnongsin, E. & Zheng, H. Lack of α-synuclein increases amyloid plaque accumulation in a transgenic mouse model of Alzheimer's disease. Mol. Neurodegener. 2, 6 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strozyk, D., Blennow, K., White, L.R. & Launer, L.J. CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60, 652–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Sunderland, T. et al. Decreased β-amyloid1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. J. Am. Med. Assoc. 289, 2094–2103 (2003).

    Article  Google Scholar 

  27. Fagan, A.M. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kawarabayashi, T. et al. Age-dependent changes in brain, CSF and plasma amyloid (β) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. 21, 372–381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maia, L.F. et al. Changes in amyloid-β and tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci. Transl. Med. 5, 194re2 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Meyer-Luehmann, M. et al. Extracellular amyloid formation and associated pathology in neural grafts. Nat. Neurosci. 6, 370–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, D.F. et al. Neocortical synapse density and Braak stage in the Lewy body variant of Alzheimer disease: a comparison with classic Alzheimer disease and normal aging. J. Neuropathol. Exp. Neurol. 57, 955–960 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Samuel, W., Alford, M., Hofstetter, C.R. & Hansen, L. Dementia with Lewy bodies versus pure Alzheimer disease: differences in cognition, neuropathology, cholinergic dysfunction, and synapse density. J. Neuropathol. Exp. Neurol. 56, 499–508 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hansen, L.A., Daniel, S.E., Wilcock, G.K. & Love, S. Frontal cortical synaptophysin in Lewy body diseases: relation to Alzheimer's disease and dementia. J. Neurol. Neurosurg. Psychiatry 64, 653–656 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olichney, J.M. et al. Cognitive decline is faster in Lewy body variant than in Alzheimer's disease. Neurology 51, 351–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Bibl, M. et al. CSF amyloid-β-peptides in Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease dementia. Brain 129, 1177–1187 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Compta, Y., Revesz, T. & Lees, A.J. The more cortical amyloid-β, the more postural instability in Parkinson's disease: more grist to the mill for a link between walking, falling, and remembering? Mov. Disord. 28, 263–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kahle, P.J. et al. Subcellular localization of wild-type and Parkinson's disease–associated mutant α-synuclein in human and transgenic mouse brain. J. Neurosci. 20, 6365–6373 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamasaki, A. et al. The GxGD motif of presenilin contributes to catalytic function and substrate identification of γ-secretase. J. Neurosci. 26, 3821–3828 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates 2nd edn. (Academic Press, 2001).

  42. DeMattos, R.B. et al. Plaque-associated disruption of CSF and plasma amyloid-beta (Aβ) equilibrium in a mouse model of Alzheimer's disease. J. Neurochem. 81, 229–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Page, R.M. et al. Loss of PAFAH1B2 reduces amyloid-β generation by promoting the degradation of amyloid precursor protein C-terminal fragments. J. Neurosci. 32, 18204–18214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Wenninger-Weinzierl, S. Diederich, S. Waldkirch and R. Ziegler for technical assistance. This work was supported by the Emmy Noether Program of the Deutsche Forschungsgemeinschaft (M.M.-L.), the European Research Council (ERC) under the EU′s Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement no. 321366-Amyloid (advanced grant to C.H.), the Kompetenznetz Degenerative Demenzen of the German Federal Ministry of Education and Research (C.H. and H.S.), the Hans and Ilse Breuer Foundation (M.M.-L.), the Graduate School of Systemic Neurosciences (J.F.M.) and the International Max Planck Research School (J.F.M.). We also would like to thank T. Iwatsubo (University of Tokyo) for the phospho-Ser129 antibody, E. Kremmer (Ludwig-Maximilians University, Munich) for the 3552 and 15G7 antibodies, N. Exner (Ludwig-Maximilians University, Munich) for the α-synuclein cDNA constructs and M. Jucker (University of Tübingen) for generously providing the APPPS1 transgenic mice.

Author information

Authors and Affiliations

Authors

Contributions

T.B., C.H. and M.M.-L. conceived the experiments. T.B., N.K., J.F.M., D.L., S.T., C.A.-A., B.N., F.K. and A.S.-P. performed experiments. B.T.H. provided human brain samples. A.M., D.L. and M.P. performed electron microscopy. H.S., S.T., F.K. and A.S.-P. provided important experimental guidance. T.B., J.F.M., H.S., B.T.H., C.H. and M.M.-L. discussed the results. T.B., J.F.M. and M.M.-L. wrote the manuscript. M.M.-L. supervised the project and coordinated the study. All authors edited the paper.

Corresponding author

Correspondence to Melanie Meyer-Luehmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary figures 1–8, Supplementary tables 1–2 & Supplementary Methods (PDF 1634 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachhuber, T., Katzmarski, N., McCarter, J. et al. Inhibition of amyloid-β plaque formation by α-synuclein. Nat Med 21, 802–807 (2015). https://doi.org/10.1038/nm.3885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing