Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models

Subjects

Abstract

Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to cross-link actin microfilaments into higher-order structures has been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the substantial regenerative potential of injured glomeruli and identifying the oligomerization cycle of dynamin as an attractive potential therapeutic target to treat CKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamin oligomerization is essential for kidney function.
Figure 2: Dynamin oligomerization ameliorates transient proteinuria.
Figure 3: Dynamin oligomerization in podocytes protects against proteinuria.
Figure 4: Dynamin oligomerization targets actin cytoskeleton in podocytes.
Figure 5: Dynamin oligomerization has beneficial effect on kidney morphology in PKCɛKO mice.
Figure 6: Dynamin oligomerization ameliorates proteinuria due to diabetic nephropathy.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Meguid El Nahas, A. & Bello, A.K. Chronic kidney disease: the global challenge. Lancet 365, 331–340 (2005).

    CAS  PubMed  Google Scholar 

  2. Saran, R., Hedgeman, E., Huseini, M., Stack, A. & Shahinian, V. Surveillance of chronic kidney disease around the world: tracking and reining in a global problem. Adv. Chronic Kidney Dis. 17, 271–281 (2010).

    PubMed  Google Scholar 

  3. Haraldsson, B., Nystrom, J. & Deen, W.M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    CAS  PubMed  Google Scholar 

  4. Brown, E.J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    CAS  PubMed  Google Scholar 

  5. Boyer, O. et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 239–245 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Santín, S. et al. Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int. 76, 1268–1276 (2009).

    PubMed  Google Scholar 

  7. Shih, N.Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999).

    CAS  PubMed  Google Scholar 

  8. Kaplan, J.M. et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    CAS  PubMed  Google Scholar 

  9. Pagtalunan, M.E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    CAS  PubMed  Google Scholar 

  11. Wiggins, R.C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    CAS  PubMed  Google Scholar 

  12. Jefferson, J.A., Alpers, C.E. & Shankland, S.J. Podocyte biology for the bedside. Am. J. Kidney Dis. 58, 835–845 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med. 354, 1387–1401 (2006).

    CAS  PubMed  Google Scholar 

  14. Ronco, P. Proteinuria: is it all in the foot? J. Clin. Invest. 117, 2079–2082 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Seiler, M.W., Rennke, H.G., Venkatachalam, M.A. & Cotran, R.S. Pathogenesis of polycation-induced alterations (“fusion”) of glomerular epithelium. Lab. Invest. 36, 48–61 (1977).

    CAS  PubMed  Google Scholar 

  16. Reiser, J. & Sever, S. Podocyte biology and pathogenesis of kidney disease. Annu. Rev. Med. 64, 357–366 (2013).

    CAS  PubMed  Google Scholar 

  17. Sever, S. et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J. Clin. Invest. 117, 2095–2104 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Soda, K. et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J. Clin. Invest. 122, 4401–4411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mettlen, M., Pucadyil, T., Ramachandran, R. & Schmid, S.L. Dissecting dynamin′s role in clathrin-mediated endocytosis. Biochem. Soc. Trans. 37, 1022–1026 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sever, S., Chang, J. & Gu, C. Dynamin rings: not just for fission. Traffic 14, 1194–1199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinshaw, J.E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu, C. et al. Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J. 29, 3593–3606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ross, J.A. et al. Dimeric endophilin A2 stimulates assembly and GTPase activity of dynamin 2. Biophys. J. 100, 729–737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hill, T. et al. Small molecule inhibitors of dynamin I GTPase activity: development of dimeric tyrphostins. J. Med. Chem. 48, 7781–7788 (2005).

    CAS  PubMed  Google Scholar 

  25. Gu, C. et al. Regulation of dynamin oligomerization in cells: the role of dynamin-actin interactions and its GTPase activity. Traffic 15, 819–838 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibbs, E.M. et al. Two dynamin-2 genes are required for normal zebrafish development. PLoS ONE 8, e55888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanke, N. et al. “Zebrafishing” for novel genes relevant to the glomerular filtration barrier. BioMed Research International 2013, 658270 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Hentschel, D.M. et al. Rapid screening of glomerular slit diaphragm integrity in larval zebrafish. Am. J. Physiol. Renal Physiol. 293, F1746–F1750 (2007).

    CAS  PubMed  Google Scholar 

  29. Kirsch, T. et al. Knockdown of the hypertension-associated gene NOSTRIN alters glomerular barrier function in zebrafish (Danio rerio). Hypertension 62, 726–730 (2013).

    CAS  PubMed  Google Scholar 

  30. Song, B.D., Yarar, D. & Schmid, S.L. An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo. Mol. Biol. Cell 15, 2243–2252 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pippin, J.W. et al. Inducible rodent models of acquired podocyte diseases. Am. J. Physiol. Renal Physiol. 296, F213–F229 (2009).

    CAS  PubMed  Google Scholar 

  33. Sever, S., Muhlberg, A.B. & Schmid, S.L. Impairment of dynamin′s GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).

    CAS  PubMed  Google Scholar 

  34. Henderson, J.M., Al-Waheeb, S., Weins, A., Dandapani, S.V. & Pollak, M.R. Mice with altered α-actinin-4 expression have distinct morphologic patterns of glomerular disease. Kidney Int. 73, 741–750 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao, J. et al. α-Actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol. 2, e167 (2004).

    PubMed  PubMed Central  Google Scholar 

  36. Tossidou, I. et al. CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J. Biol. Chem. 285, 25285–25295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Meier, M. et al. Deletion of protein kinase C-ɛ signaling pathway induces glomerulosclerosis and tubulointerstitial fibrosis in vivo. J. Am. Soc. Nephrol. 18, 1190–1198 (2007).

    CAS  PubMed  Google Scholar 

  38. Akita, Y. Protein kinase Cɛ: novel aspects of its multiple functions in cellular signaling. FEBS J. 275, 3987 (2008).

    CAS  PubMed  Google Scholar 

  39. Chhabra, E.S. & Higgs, H.N. INF2 is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J. Biol. Chem. 281, 26754–26767 (2006).

    CAS  PubMed  Google Scholar 

  40. Ruotsalainen, V. et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl. Acad. Sci. USA 96, 7962–7967 (1999).

    CAS  PubMed  Google Scholar 

  41. Graham, M.L., Janecek, J.L., Kittredge, J.A., Hering, B.J. & Schuurman, H.J. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp. Med. 61, 356–360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Giganti, A. & Friederich, E. The actin cytoskeleton as a therapeutic target: state of the art and future directions. Prog. Cell Cycle Res. 5, 511–525 (2003).

    PubMed  Google Scholar 

  43. Schiff, P.B., Fant, J. & Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–667 (1979).

    CAS  PubMed  Google Scholar 

  44. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 1353–1367 (2012).

    CAS  PubMed  Google Scholar 

  46. Byron, A. et al. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J. Am. Soc. Nephrol. 25, 953–966 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Menon, M.C., Chuang, P.Y. & He, C.J. The glomerular filtration barrier: components and crosstalk. Int. J. Nephrol. 2012, 749010 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Shankland, S.J., Pippin, J.W. & Duffield, J.S. Progenitor cells and podocyte regeneration. Semin. Nephrol. 34, 418–428 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Quan, A. & Robinson, P.J. Rapid purification of native dynamin I and colorimetric GTPase assay. Methods Enzymol. 404, 556–569 (2005).

    CAS  PubMed  Google Scholar 

  51. Leonard, M., Song, B.D., Ramachandran, R. & Schmid, S.L. Robust colorimetric assays for dynamin′s basal and stimulated GTPase activities. Methods Enzymol. 404, 490–503 (2005).

    CAS  PubMed  Google Scholar 

  52. Mundel, P., Reiser, J. & Kriz, W. Induction of differentiation in cultured rat and human podocytes. J. Am. Soc. Nephrol. 8, 697–705 (1997).

    CAS  PubMed  Google Scholar 

  53. Worthmann, K. et al. Def-6, a novel regulator of small GTPases in podocytes, acts downstream of atypical protein kinase C (aPKC) λ/ι. Am. J. Pathol. 183, 1945–1959 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schiffer, M., Mundel, P., Shaw, A.S. & Bottinger, E.P. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-β-induced apoptosis. J. Biol. Chem. 279, 37004–37012 (2004).

    CAS  PubMed  Google Scholar 

  55. Xie, J., Farage, E., Sugimoto, M. & Anand-Apte, B. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev. Biol. 10, 76 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Ashworth, S. et al. Cofilin-1 inactivation leads to proteinuria–studies in zebrafish, mice and humans. PLoS ONE 5, e12626 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Hilfiker-Kleiner, D. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128, 589–600 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01 DK093773 and DK087985 to S.S.), the NephCure Foundation (S.S.), and Deutsche Forschungsgemeinschaft (SCHI587/3, 4, 6 to M.S. and REBIRTH 2 to D.H.-K. and S.E.). N.H. is the recipient of the New Investigator Award from Mount Desert Island Biological Laboratory. The DNA encoding genes for PKCɛ and mutant with impaired kinase activity were gifts from J.-W. Soh, Inha University, Incheon, South Korea. Immortalized podocytes from ACTN4 mice, ACTN4 mice and morpholino to downregulate inf2 were gifts from M. Pollak, Beth Israel Deaconess Medical Center, Boston, MA. Tg (L-FABP:DBP-EGFP) and Tg (l-fabp:DBP-EGFP) zebrafish were gifts from J. Xie and B. Anand-Apte, Cleveland Clinic, Cleveland, OH. PKCɛKO mice were gifts from M. Leitges, University of Oslo, Oslo, Norway. CD2APKO mice were gifts from A. Shaw, Washington University, St. Louis, MO.

Author information

Authors and Affiliations

Authors

Contributions

M.S., H.H., J.R. and S.S. designed the research; B.T., C.G., V.A.S., M.K., N.H., P.S., L.S., I.T., J.-K.P., S.E., D.H.-K., C.W., S.M., C.C., N.T., S.H., S.R., M.K.S., A.V. and F.G. performed the research. B.T., C.G., M.K., M.S., and S.S. analyzed the data. M.S., B.T., C.G. and S.S. wrote the manuscript.

Corresponding authors

Correspondence to Mario Schiffer or Sanja Sever.

Ethics declarations

Competing interests

S.S. and J.R. have pending or issued patents on novel kidney-protective therapies that have been out-licensed to Trisaq Inc. in which they have financial interest. In addition, they stand to gain royalties from their commercialization. The remaining authors report no conflicts.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 49110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiffer, M., Teng, B., Gu, C. et al. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat Med 21, 601–609 (2015). https://doi.org/10.1038/nm.3843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing