Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Excess TGF-β mediates muscle weakness associated with bone metastases in mice

Abstract

Cancer-associated muscle weakness is a poorly understood phenomenon, and there is no effective treatment. Here we find that seven different mouse models of human osteolytic bone metastases—representing breast, lung and prostate cancers, as well as multiple myeloma—exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that transforming growth factor (TGF)-β, released from the bone surface as a result of metastasis-induced bone destruction, upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor and calcium (Ca2+) release channel (RyR1). The oxidized RyR1 channels leaked Ca2+, resulting in lower intracellular signaling, which is required for proper muscle contraction. We found that inhibiting RyR1 leakage, TGF-β signaling, TGF-β release from bone or Nox4 activity improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast- or lung cancer–associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, increased Nox4 binding to RyR1 and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a nonmalignant metabolic bone disorder associated with increased TGF-β activity. Thus, pathological TGF-β release from bone contributes to muscle weakness by decreasing Ca2+-induced muscle force production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Skeletal muscle weakness is due to breast cancer bone metastases.
Figure 2: Treatment with Rycal (S107) improves muscle strength and lowers SR Ca2+ leakage.
Figure 3: Blocking TGF-β signaling or inhibiting bone resorption lowers SMAD3 phosphorylation and improves muscle function.
Figure 4: Blocking TGF-β ligand lowers SMAD3 phosphorylation and improves muscle function.
Figure 5: TGF-β activity leads to higher NADPH oxidase 4 (Nox4) expression and RyR1-Nox4 interaction.
Figure 6: NADPH oxidase 4 (Nox4) inhibition prevents RyR1 oxidation and improves muscle strength.

Similar content being viewed by others

References

  1. Fearon, K.C., Glass, D.J. & Guttridge, D.C. Cancer cachexia: mediators, signaling and metabolic pathways. Cell Metab. 16, 153–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Gentry, B.A., Ferreira, J.A., Phillips, C.L. & Brown, M. Hindlimb skeletal muscle function in myostatin-deficient mice. Muscle Nerve 43, 49–57 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mendias, C.L., Marcin, J.E., Calerdon, D.R. & Faulkner, J.A. Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J. Appl. Physiol. 101, 898–905 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Weilbaecher, K.N., Guise, T.A. & McCauley, L.K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411–425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coleman, R.E. et al. Metastasis and bone loss: advancing treatment and prevention. Cancer Treat. Rev. 36, 615–620 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kang, Y. et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. USA 102, 13909–13914 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korpal, M. et al. Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat. Med. 15, 960–966 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Tang, Y. et al. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zalk, R., Lehnart, S.E. & Marks, A.R. Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem. 76, 367–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Andersson, D.C. et al. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 14, 196–207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guise, T.A. et al. Evidence for a causal role of parathyroid hormone–related protein in the pathogenesis of human breast cancer–mediated osteolysis. J. Clin. Invest. 98, 1544–1549 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vera-Ramirez, L. et al. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit. Rev. Oncol. Hematol. 80, 347–368 (2011).

    Article  PubMed  Google Scholar 

  13. Bellinger, A.M. et al. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat. Med. 15, 325–330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, X. & Kang, Y. Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc. Natl. Acad. Sci. USA 106, 9385–9390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guise, T.A., Yoneda, T., Yates, A.J. & Mundy, G.R. The combined effect of tumor-produced parathyroid hormone–related protein and transforming growth factor-α enhance hypercalcemia in vivo and bone resorption in vitro. J. Clin. Endocrinol. Metab. 77, 40–45 (1993).

    CAS  PubMed  Google Scholar 

  16. Hjorth-Hansen, H. et al. Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. J. Bone Miner. Res. 14, 256–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Bellinger, A.M. et al. Remodeling of ryanodine receptor complex causes 'leaky' channels: a molecular mechanism for decreased exercise capacity. Proc. Natl. Acad. Sci. USA 105, 2198–2202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andersson, D.C. & Marks, A.R. Fixing ryanodine receptor Ca leak: a novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov. Today Dis. Mech. 7, e151–e157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dallas, S.L., Rosser, J.L., Mundy, G.R. & Bonewald, L.F. Proteolysis of latent transforming growth factor-β (TGF-β)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-β from bone matrix. J. Biol. Chem. 277, 21352–21360 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Yin, J.J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, Y. & Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Dasch, J.R., Pace, D.R., Waegell, W., Inenaga, D. & Ellingsworth, L. Monoclonal antibodies recognizing transforming growth factor–β. Bioactivity neutralization and transforming growth factor β2 affinity purification. J. Immunol. 142, 1536–1541 (1989).

    CAS  PubMed  Google Scholar 

  24. Biswas, S. et al. Anti–transforming growth factor ss antibody treatment rescues bone loss and prevents breast cancer metastasis to bone. PLoS ONE 6, e27090 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, Q.A. et al. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc. Natl. Acad. Sci. USA 108, 16098–16103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carmona-Cuenca, I. et al. Upregulation of the NADPH oxidase NOX4 by TGF-β in hepatocytes is required for its pro-apoptotic activity. J. Hepatol. 49, 965–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Hubackova, S., Krejcikova, K., Bartek, J. & Hodny, Z. IL1- and TGF-β–Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced and drug-induced paracrine 'bystander senescence'. Aging (Albany NY) 4, 932–951 (2012).

    Article  CAS  Google Scholar 

  28. Michaeloudes, C., Sukkar, M.B., Khorasani, N.M., Bhavsar, P.K. & Chung, K.F. TGF-β regulates Nox4, MnSOD and catalase expression and IL-6 release in airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L295–L304 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Yan, F. et al. Nox4 and redox signaling mediate TGF-β–induced endothelial cell apoptosis and phenotypic switch. Cell Death Dis. 5, e1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, J.X. et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic. Biol. Med. 53, 289–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janssens, K. et al. Mutations in the gene encoding the latency-associated peptide of TGF-β1 cause Camurati-Engelmann disease. Nat. Genet. 26, 273–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Janssens, K., ten Dijke, P., Ralston, S.H., Bergmann, C. & Van Hul, W. Transforming growth factor-β1 mutations in Camurati-Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J. Biol. Chem. 278, 7718–7724 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Mendias, C.L. et al. Transforming growth factor-β induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 45, 55–59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. McPherron, A.C., Lawler, A.M. & Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Bogdanovich, S. et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wehrens, X.H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304, 292–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Dunn, L.K. et al. Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS ONE 4, e6896 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Soule, H.D., Vazguez, J., Long, A., Albert, S. & Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51, 1409–1416 (1973).

    Article  CAS  PubMed  Google Scholar 

  40. Yin, J.J. et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc. Natl. Acad. Sci. USA 100, 10954–10959 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, Z. et al. Systemic delivery of oncolytic adenoviruses targeting transforming growth factor-β inhibits established bone metastasis in a prostate cancer mouse model. Hum. Gene Ther. 23, 871–882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson, R.W. et al. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin. Exp. Metastasis 31, 945–959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jackson, N. et al. Two new IgA1-κ plasma cell leukaemia cell lines (JJN-1 & JJN-2) which proliferate in response to B cell stimulatory factor 2. Clin. Exp. Immunol. 75, 93–99 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonetto, A., Andersson, D.C. & Waning, D.L. Assessment of muscle mass and strength in mice. Bonekey Rep. 4, 732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yamada, T. et al. Impaired myofibrillar function in the soleus muscle of mice with collagen-induced arthritis. Arthritis Rheum. 60, 3280–3289 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Aydin, J. et al. Increased mitochondrial Ca2+ and decreased sarcoplasmic reticulum Ca2+ in mitochondrial myopathy. Hum. Mol. Genet. 18, 278–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Lai, X. et al. Characterization of the renal cyst fluid proteome in autosomal dominant polycystic kidney disease (ADPKD) patients. Proteomics Clin. Appl. 2, 1140–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lai, X., Wang, L., Tang, H. & Witzmann, F.A. A novel alignment method and multiple filters for exclusion of unqualified peptides to enhance label-free quantification using peptide intensity in LC-MS/MS. J. Proteome Res. 10, 4799–4812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohammad, K.S. et al. Pharmacologic inhibition of the TGF-β type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS ONE 4, e5275 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kimura, Y., Kurzydlowski, K., Tada, M. & MacLennan, D.H. Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. J. Biol. Chem. 271, 21726–21731 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Cheng, H. et al. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys. J. 76, 606–617 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Winter, J.C.F. Using the Student's t-test with extremely small sample sizes. Pract. Assess., Res. Eval. 18, 1–12 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) (grant U01CA143057 (T.A.G.) from the National Cancer Institute (NCI) Tumor Microenvironment Network, NCI-R01CA69158 (T.A.G.), NCI-R21CA179017 (G.D.R.), NHLBI-R01HL061503 (A.R.M.), NHLBI-R01HL102040 (A.R.M.), NIAMS-R01AR060037 (A.R.M.), NIH T32 HL120826 (A.R.M.), NINDS-R25NS076445 (A.R.M.), NIH-NINDS R25NS076445 (A.H.), NIH-NIAMS R01AR063943 (X.C.), and NIH-NHLBI T35 HL110854-01 (S.C. and P.K.)), the Susan G. Komen Foundation (grant SAC110013; T.A.G.), the Indiana Economic Development Grant (T.A.G.), the Jerry and Peggy Throgmartin Endowment of the Indiana University Simon Cancer Center (T.A.G.), the Indiana University Simon Cancer Center Breast Cancer Program (T.A.G.), the American Cancer Society and Indiana University Simon Cancer Center (grant IRG-84-002-28; D.L.W.), the Indiana University Health Strategic Research Initiative in Oncology (D.L.W.), the VA Merit Review Award (G.D.R.), the Fondation Leducq (A.R.M.), the Ellison Foundation (A.R.M.), the Swedish Heart Lung Foundation and Stockholm County Council (D.C.A.) and a generous donation from the Withycombe family (T.A.G.). Camurati-Engelmann disease (CED) mice were previously described and provided by X. Cao (Johns Hopkins, Baltimore, MD).

Author information

Authors and Affiliations

Authors

Contributions

All contributing authors have agreed to submission of this manuscript for publication. T.A.G. and A.R.M. conceived of the study. D.L.W., K.S.M., A.R.M. and T.A.G. designed and performed experiments, analyzed data and interpreted results. S.R., W.X., D.C.A., S.J., M.N., A.C., L.E.W., A.W., A.H., A.U., T.T., S.C., F.A.W. and P.K. performed experiments. M.S.B. analyzed data. G.D.R. and F.A.W. designed experiments and interpreted results. G.Z., X.W. and X.C. provided the CED mice and reviewed the results. D.L.W., K.S.M., A.R.M. and T.A.G. wrote the manuscript.

Corresponding author

Correspondence to Theresa A Guise.

Ethics declarations

Competing interests

A.R.M. is a member of the board and consults for ARMGO Pharma Inc., a startup company developing RyR-targeted therapeutics; T.A.G. was a consultant and advisory board member for Novartis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 26024 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waning, D., Mohammad, K., Reiken, S. et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med 21, 1262–1271 (2015). https://doi.org/10.1038/nm.3961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3961

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research