Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells

A Corrigendum to this article was published on 06 April 2016

This article has been updated

Abstract

Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation related also control retention of endothelial protein C receptor–positive (EPCR+) LT-HSCs in the bone marrow and their recruitment to the blood via two pathways mediated by protease activated receptor 1 (PAR1). Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to EPCR shedding mediated by tumor necrosis factor-α–converting enzyme (TACE), enhanced CXCL12-CXCR4–induced motility and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with activated protein C (aPC) that retains EPCR+ LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing integrin VLA4 affinity and adhesion. Inhibition of NO production by aPC-EPCR-PAR1 signaling reduces progenitor cell egress from the bone marrow, increases retention of bone marrow NOlow EPCR+ LT-HSCs and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR in controlling NO production to balance maintenance and recruitment of bone marrow EPCR+ LT-HSCs, with potential clinical relevance for stem cell transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thrombin-PAR1 signaling induces HSC recruitment.
Figure 2: Thrombin-PAR1–dependent EPCR shedding induces HSC mobilization.
Figure 3: A bone marrow endothelial microenvironment enriched with TM and aPC regulates EPCR+ HSC retention.
Figure 4: aPC-EPCR-PAR1 signaling retains HSCs by inducing Cdc42 polarity and stabilizing VLA4.
Figure 5: Thrombin-PAR1 signaling induces NO production and HSC mobilization.
Figure 6: aPC-EPCR signaling limits NO production and promotes LT-HSC retention.

Similar content being viewed by others

Change history

  • 18 November 2015

    In the version of this article initially published, the first author's name was incorrect. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Papayannopoulou, T. & Scadden, D.T. Stem-cell ecology and stem cells in motion. Blood 111, 3923–3930 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. & Lapidot, T. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 3, 484–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Schajnovitz, A. et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat. Immunol. 12, 391–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Priestley, G.V., Ulyanova, T. & Papayannopoulou, T. Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+α4f/f mice are hematopoietic cell autonomous. Blood 109, 109–111 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y. et al. Identification of CXCR4 as a new nitric oxide-regulated gene in human CD34+ cells. Stem Cells 25, 211–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Karp, J.M. et al. Thrombin mediated migration of osteogenic cells. Bone 37, 337–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Colognato, R. et al. Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 102, 2645–2652 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ho, I.A. et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27, 1366–1375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riewald, M. & Ruf, W. Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J. Biol. Chem. 280, 19808–19814 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Aronovich, A. et al. A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood 122, 2562–2571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tjwa, M. et al. Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells. J. Clin. Invest. 119, 1008–1018 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tudpor, K. et al. Thrombin receptor deficiency leads to a high bone mass phenotype by decreasing the RANKL/OPG ratio. Bone 72, 14–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Balazs, A.B., Fabian, A.J., Esmon, C.T. & Mulligan, R.C. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107, 2317–2321 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kent, D.G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113, 6342–6350 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Iwasaki, H., Arai, F., Kubota, Y., Dahl, M. & Suda, T. Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood 116, 544–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, N.K. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296, 1880–1882 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Griffin, J.H., Zlokovic, B.V. & Mosnier, L.O. Activated protein C: biased for translation. Blood 125, 2898–2907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geiger, H. et al. Pharmacological targeting of the thrombomodulin-activated protein C pathway mitigates radiation toxicity. Nat. Med. 18, 1123–1129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hein, L., Ishii, K., Coughlin, S.R. & Kobilka, B.K. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J. Biol. Chem. 269, 27719–27726 (1994).

    CAS  PubMed  Google Scholar 

  26. Steidl, U. et al. Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood 99, 2037–2044 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Wautier, F., Wislet-Gendebien, S., Chanas, G., Rogister, B. & Leprince, P. Regulation of nestin expression by thrombin and cell density in cultures of bone mesenchymal stem cells and radial glial cells. BMC Neurosci. 8, 104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dar, A. et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 25, 1286–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Broxmeyer, H.E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P.S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Gu, J.M., Katsuura, Y., Ferrell, G.L., Grammas, P. & Esmon, C.T. Endotoxin and thrombin elevate rodent endothelial cell protein C receptor mRNA levels and increase receptor shedding in vivo. Blood 95, 1687–1693 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Qu, D., Wang, Y., Esmon, N.L. & Esmon, C.T. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-α–converting enzyme/ADAM17. J. Thromb. Haemost. 5, 395–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Sagi, I., Wong, E. & Afik, R. Variants of TACE pro-domain as TNF-A inhibitor and their medical use. US patent 20150132281 A1 (2015).

  34. Stearns-Kurosawa, D.J., Kurosawa, S., Mollica, J.S., Ferrell, G.L. & Esmon, C.T. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc. Natl. Acad. Sci. USA 93, 10212–10216 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Disse, J. et al. The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors. J. Biol. Chem. 286, 5756–5767 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Gu, J.M. et al. Disruption of the endothelial cell protein C receptor gene in mice causes placental thrombosis and early embryonic lethality. J. Biol. Chem. 277, 43335–43343 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Castellino, F.J. et al. Mice with a severe deficiency of the endothelial protein C receptor gene develop, survive, and reproduce normally, and do not present with enhanced arterial thrombosis after challenge. Thromb. Haemost. 88, 462–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Weiler-Guettler, H. et al. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J. Clin. Invest. 101, 1983–1991 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L., Yang, L., Filippi, M.D., Williams, D.A. & Zheng, Y. Genetic deletion of Cdc42GAP reveals a role of Cdc42 in erythropoiesis and hematopoietic stem/progenitor cell survival, adhesion, and engraftment. Blood 107, 98–105 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geiger, H., Koehler, A. & Gunzer, M. Stem cells, aging, niche, adhesion and Cdc42: a model for changes in cell-cell interactions and hematopoietic stem cell aging. Cell Cycle 6, 884–887 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Florian, M.C. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Papayannopoulou, T., Priestley, G.V. & Nakamoto, B. Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 91, 2231–2239 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Taniguchi Ishikawa, E. et al. Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated β1/β2-integrin trafficking. Nat. Commun. 4, 1660 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Williams, D.A., Zheng, Y. & Cancelas, J.A. Rho GTPases and regulation of hematopoietic stem cell localization. Methods Enzymol. 439, 365–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. North, T.E. et al. Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736–748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 9, 1370–1376 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Kolluru, G.K., Siamwala, J.H. & Chatterjee, S. eNOS phosphorylation in health and disease. Biochimie 92, 1186–1198 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, D. et al. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517, 81–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Schaffner, F. et al. Endothelial protein C receptor function in murine and human breast cancer development. PLoS ONE 8, e61071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pepler, L., Yu, P., Dwivedi, D.J., Trigatti, B.L. & Liaw, P.C. Characterization of mice harboring a variant of EPCR with impaired ability to bind protein C: novel role of EPCR in hematopoiesis. Blood 126, 673–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20, 1321–1326 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20, 1315–1320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Slungaard, A. et al. Platelet factor 4 enhances generation of activated protein C in vitro and in vivo. Blood 102, 146–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ludin, A. et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13, 1072–1082 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, L. et al. Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc. Natl. Acad. Sci. USA 104, 5091–5096 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, F.C. et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc. Natl. Acad. Sci. USA 98, 5614–5618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Esmon, C.T. Crosstalk between inflammation and thrombosis. Maturitas 47, 305–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, L. et al. A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood 118, 4102–4110 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Damiano, B.P. et al. Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J. Pharmacol. Exp. Ther. 288, 671–678 (1999).

    CAS  PubMed  Google Scholar 

  62. Darrow, A.L. et al. Biological consequences of thrombin receptor deficiency in mice. Thromb. Haemost. 76, 860–866 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, J., Ji, Y., Zhang, X., Drake, M. & Esmon, C.T. Endogenous activated protein C signaling is critical to protection of mice from lipopolysaccaride-induced septic shock. J. Thromb. Haemost. 7, 851–856 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Dickinson, C.D. & Ruf, W. Active site modification of factor VIIa affects interactions of the protease domain with tissue factor. J. Biol. Chem. 272, 19875–19879 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Procrlow mice were provided by F.J. Castellino (University of Notre Dame). F2r−/− and F2rl2−/− were provided by P. Andrade-Gordon (Johnson & Johnson). ThbdPro/Pro mice were provided by H. Weiler (Blood Center of Wisconsin). Anti-TACE prodomain antibody was provided by C. Blobel (Hospital of Special Surgery). We thank C.E. Dunbar (NIH) for critically reviewing this manuscript and R. Rotkopf (Weizmann Institute of Science) for assistance in data statistical analysis. This study was supported by the Israel Science Foundation (851/13), the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine and FP7-HEALTH-2010 (CELL-PID 261387) (T.L.) and NIH grants HL-31950, HL-60742, BMBF 01EO1003 and the Humboldt Foundation (W.R.).

Author information

Authors and Affiliations

Authors

Contributions

S.G.C. designed and performed experiments, analyzed data and wrote the manuscript; T.I. helped design and execute experiments and analyzed data; S.C. performed experiments and analyzed data; C.G. performed experiments; A.L., O.K., K.G., A.K., G.L. and E.N. helped with experiments; Z.P. helped with imaging flow cytometry; E.W. and I.S. provided help and guidance in experiments related to TACE prodomain inhibitor and EPCR shedding mechanism; A.E. helped design eNOS and NO-related experiments; C.T.E. provided help and guidance in EPCR- and TACE-related experiments; W.R. designed experiments and wrote the manuscript; T.L. designed the research and wrote the manuscript.

Corresponding authors

Correspondence to Wolfram Ruf or Tsvee Lapidot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Table 1 and Supplementary Note (PDF 45792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gur-Cohen, S., Itkin, T., Chakrabarty, S. et al. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med 21, 1307–1317 (2015). https://doi.org/10.1038/nm.3960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing