Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development

Abstract

The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell–activating pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kmt2d deficiency accelerates B cell lymphoma development in mice.
Figure 2: Kmt2d deficiency affects physiological B cell behavior.
Figure 3: Consequences of KMT2D mutations in human FL and DLBCL.
Figure 4: Epigenetic effects of KMT2D on target genes in mouse lymphomas.
Figure 5: Identification of KMT2D target genes in human lymphoma cells.
Figure 6: KMT2D inactivation affects growth and survival pathways in lymphoma cells.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

Gene Expression Omnibus

References

  1. De Silva, N.S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kridel, R., Sehn, L.H. & Gascoyne, R.D. Pathogenesis of follicular lymphoma. J. Clin. Invest. 122, 3424–3431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu, D. et al. The MLL3-MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745–4754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herz, H.M. et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604–2620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J.E. et al. H3K4 mono- and dimethyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Herz, H.M., Hu, D. & Shilatifard, A. Enhancer malfunction in cancer. Mol. Cell 53, 859–866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Egle, A. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103, 2276–2283 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Oricchio, E. et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 147, 554–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stadtfeld, M. & Graf, T. Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by noninvasive lineage tracing. Development 132, 203–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Santos, M.A. et al. DNA damage–induced differentiation of leukemic cells as an anti-cancer barrier. Nature 514, 107–111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoffman, J.D. et al. Immune abnormalities are a frequent manifestation of Kabuki syndrome. Am. J. Med. Genet. A. 135, 278–281 (2005).

    Article  PubMed  Google Scholar 

  14. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B cell lymphoma. Nature 459, 717–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molavi, O. et al. Gene methylation and silencing of SOCS3 in mantle cell lymphoma. Br. J. Haematol. 161, 348–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Cheung, K.J. et al. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res. 70, 9166–9174 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Guo, C. et al. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget 4, 2144–2153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sarma, V. et al. Activation of the B cell surface receptor CD40 induces A20, a novel zinc-finger protein that inhibits apoptosis. J. Biol. Chem. 270, 12343–12346 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Hsing, Y., Hostager, B.S. & Bishop, G.A. Characterization of CD40 signaling determinants regulating nuclear factor-kappa B activation in B lymphocytes. J. Immunol. 159, 4898–4906 (1997).

    CAS  PubMed  Google Scholar 

  20. Hollmann, C.A., Owens, T., Nalbantoglu, J., Hudson, T.J. & Sladek, R. Constitutive activation of extracellular signal–regulated kinase predisposes diffuse large B cell lymphoma cell lines to CD40-mediated cell death. Cancer Res. 66, 3550–3557 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bjornsson, H.T. et al. Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci. Transl. Med. 6, 256ra135 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Højfeldt, J.W., Agger, K. & Helin, K. Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov. 12, 917–930 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Li, H. & Durbin, R. Fast and accurate short-read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, Y., Soong, T.D., Wang, L., Melnick, A.M. & Elemento, O. Genome-wide detection of genes targeted by non-Ig somatic hypermutation in lymphoma. PLoS ONE 7, e40332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wacker, S.A., Houghtaling, B.R., Elemento, O. & Kapoor, T.M. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat. Chem. Biol. 8, 235–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rajadhyaksha, A.M. et al. Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am. J. Hum. Genet. 87, 643–654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott, D.W. et al. Determining cell-of-origin subtypes of diffuse large B cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 123, 1214–1217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hans, C.P. et al. Confirmation of the molecular classification of diffuse large B cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103, 275–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Wendel, H.G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mavrakis, K.J. et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev. 22, 2178–2188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ehlich, A., Martin, V., Muller, W. & Rajewsky, K. Analysis of the B cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573–583 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Gostissa, M. et al. Conditional inactivation of p53 in mature B cells promotes generation of nongerminal center–derived B cell lymphomas. Proc. Natl. Acad. Sci. USA 110, 2934–2939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brochet, X., Lefranc, M.P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503–W508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robbiani, D.F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ci, W. et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113, 5536–5548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, T.I., Johnstone, S.E. & Young, R.A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1, 729–748 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goodarzi, H., Elemento, O. & Tavazoie, S. Revealing global regulatory perturbations across human cancers. Mol. Cell 36, 900–911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cover, T.M. & Thomas, J.A. Elements of Information Theory (Wiley-Interscience, Hoboken, N.J., 2006).

  42. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaffer, A.L. et al. A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol. Rev. 210, 67–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Mootha, V.K. et al. PGC-1α–responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Mavrakis, K.J. & Wendel, H.G. Translational control and cancer therapy. Cell Cycle 7, 2791–2794 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Lin, S. & Garcia, B.A. Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol. 512, 3–28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan, Z.F. et al. EpiProfile quantifies histone peptides with modifications by extracting retention time and intensity in high-resolution mass spectra. Mol. Cell. Proteomics 14, 1696–1707 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Festing, M.F.W. & Laboratory Animals Ltd. The Design of Animal Experiments: Reducing the Use of Animals in Research Through Better Experimental Design (Royal Society of Medicine, London, 2002).

Download references

Acknowledgements

We thank E. Oricchio (MSKCC), V. Sanghvi (MSKCC), M. Boice (MSKCC), W. Beguelin and M. del Pilar Dominguez Rodriguez (Weill Cornell Medical College) for advice and reagents. Thanks to E. de Stanchina and all of the members of the MSK Antitumor assessment core for technical assistance with mice, the MSK Laboratory of Comparative Pathology, the MSK Flow Cytometry and MSK Molecular Cytology cores, H. Hagenau for Southern blot analysis and B. Sleckman for IgκIII probe. A.O.-M. is supported by funding from The Leukemia & Lymphoma Society. H.G.W. is supported by the American Cancer Society grant RSG-13-048-01-LIB, the Lymphoma Research Foundation, Cycle for Survival, W.H. Goodwin and A. Goodwin and the Commonwealth Foundation for Cancer Research, the Center for Experimental Therapeutics at Memorial Sloan Kettering Cancer Center, US National Institutes of Health (NIH) grants RO1CA183876-01 and 1R01CA19038-01 and Core Grant P30 CA008748. H.G.W. is a Scholar of the Leukemia and Lymphoma Society. A.M.M. is supported by NIH grant R01CA187109, the Chemotherapy Foundation and is a Scholar of the Burroughs Wellcome Foundation. I.W.B. is supported by a Sass Foundation Post-doctoral Fellowship award. B.A.G. acknowledges funding from an NIH Innovator grant (DP2OD007447) from the Office of the Director and NIH grant R01GM110174. A.S.H. is supported by NIH grant R01CA150265. The work in the K.G. laboratory was supported by the Intramural Research Program of the NIDDK, NIH. The work in the A.N. laboratory was supported by the Intramural Research Program of the NIH, the National Cancer Institute, the Center for Cancer Research, a Department of Defense grant (BCRP DOD Idea Expansion Award, grant 11557134) and the Alex Lemonade Stand Foundation Award.

Author information

Authors and Affiliations

Authors

Contributions

A.O.-M. designed and performed functional studies, analyzed data and wrote the manuscript; I.W.B. designed experiments, performed epigenetic studies and analyzed data; A.C. performed studies on Kmt2d−/− mice with the help of H.-T.C.; H.P. and O.E. performed RNA-seq and ChIP-Seq analysis; Y.J. and O.E. performed and analyzed exome sequencing and targeted resequencing in FL samples; C.Z. and M.J. provided technical assistance; D.H. and A.S. performed and analyzed KMT2D ChIP-seq in DLBCL cell lines; X.A. performed KMT2D expression analysis in B cell populations; I.N. performed CD40 and IgM stimulation experiments on lymphoma cell lines; K.G. and J.-E.L. generated the Kmt2dfl/fl mice; D.E., D.W.S., C.H., A.M. and R.D.G. performed KMT2D sequencing and cell-of-origin determination in DLBCL samples; S.L., X.-J.C. and B.A.G. performed quantitative mass spectrometry analysis of lymphoma cell lines; R.S. performed pathological evaluation of mouse models; W.T. provided critical clinical samples; A.N. supervised the experiments on Kmt2d−/− mice; and A.M.M. and H.-G.W. designed and directed the study.

Corresponding authors

Correspondence to Ari M Melnick or Hans-Guido Wendel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega-Molina, A., Boss, I., Canela, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med 21, 1199–1208 (2015). https://doi.org/10.1038/nm.3943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3943

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer