Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response

Abstract

The brain, in particular the hypothalamus, plays a role in regulating glucose homeostasis; however, it remains unclear whether this organ is causally and etiologically involved in the development of diabetes. Here, we found that hypothalamic transforming growth factor-β (TGF-β) production is excessive under conditions of not only obesity but also aging, which are two general etiological factors of type 2 diabetes. Pharmacological and genetic approaches revealed that central TGF-β excess caused hyperglycemia and glucose intolerance independent of a change in body weight. Further, using cell-specific genetic analyses in vivo, we found that astrocytes and proopiomelanocortin neurons are responsible for the production and prodiabetic effect of central TGF-β, respectively. Mechanistically, TGF-β excess induced a hypothalamic RNA stress response, resulting in accelerated mRNA decay of IκBα, an inhibitor of proinflammatory nuclear factor-κB. These results reveal an atypical, mRNA metabolism–driven hypothalamic nuclear factor-κB activation, a mechanism that links obesity as well as aging to hypothalamic inflammation and ultimately to type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excess brain TGF-β1 induces a systemic glucose disorder.
Figure 2: Astrocyte-specific TGF-β1 transgenic expression leads to metabolic dysfunction.
Figure 3: Cell-specific TGF-β1 inhibition reduces diet-induced metabolic dysfunction.
Figure 4: Effect of TGF-β1 excess on hypothalamic inflammation.
Figure 5: Effects of TGF-β1 on hypothalamic RNA SGs and IκBα mRNA decay.
Figure 6: Hypothalamic TGF-β and RNA SGs and PBs link aging to metabolic dysfunction.

Similar content being viewed by others

References

  1. Samuel, V.T. & Shulman, G.I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gregor, M.F. & Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    CAS  PubMed  Google Scholar 

  3. Muoio, D.M. & Newgard, C.B. Obesity-related derangements in metabolic regulation. Annu. Rev. Biochem. 75, 367–401 (2006).

    CAS  PubMed  Google Scholar 

  4. Glass, C.K. & Olefsky, J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mighiu, P.I. et al. Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat. Med. 19, 766–772 (2013).

    CAS  PubMed  Google Scholar 

  6. Berglund, E.D. et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Invest. 122, 1000–1009 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Obici, S., Zhang, B.B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382 (2002).

    CAS  PubMed  Google Scholar 

  8. Lam, T.K. et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat. Med. 11, 320–327 (2005).

    CAS  PubMed  Google Scholar 

  9. Joly-Amado, A. et al. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 31, 4276–4288 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wisse, B.E., Kim, F. & Schwartz, M.W. Physiology. An integrative view of obesity. Science 318, 928–929 (2007).

    CAS  PubMed  Google Scholar 

  11. Cone, R.D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    CAS  PubMed  Google Scholar 

  12. Cai, D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases 2250. Trends Endocrinol. Metab. 24, 40–47 (2013).

    CAS  PubMed  Google Scholar 

  13. Cai, D. & Liu, T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann. NY Acad. Sci. 1243, E1–E39 (2011).

    PubMed  Google Scholar 

  14. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. De Souza, C.T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    CAS  PubMed  Google Scholar 

  16. Kleinridders, A. et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 10, 249–259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Horvath, T.L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl. Acad. Sci. USA 107, 14875–14880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. J. Biol. Chem. 286, 32324–32332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Purkayastha, S. et al. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc. Natl. Acad. Sci. USA 108, 2939–2944 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Purkayastha, S., Zhang, G. & Cai, D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB. Nat. Med. 17, 883–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Milanski, M. et al. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61, 1455–1462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thaler, J.P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    CAS  PubMed  Google Scholar 

  23. Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Purkayastha, S. & Cai, D. Neuroinflammatory basis of metabolic syndrome. Mol. Metab. 2, 356–363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang, Y. & Cai, D. Hypothalamic inflammation and GnRH in aging development. Cell Cycle 12, 2711–2712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, J., Tang, Y. & Cai, D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol. 14, 999–1012 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, J. et al. Control of obesity and glucose intolerance via building neural stem cells in the hypothalamus. Mol. Metab. 3, 313–324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wan, Y.Y. & Flavell, R.A. 'Yin-Yang' functions of transforming growth factor-β and T regulatory cells in immune regulation. Immunol. Rev. 220, 199–213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, M.O. et al. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    CAS  PubMed  Google Scholar 

  30. Hall, B.E. et al. Conditional overexpression of TGF-β1 disrupts mouse salivary gland development and function. Lab. Invest. 90, 543–555 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bouret, S. et al. Evidence that TGF β may directly modulate POMC mRNA expression in the female rat arcuate nucleus. Endocrinology 142, 4055–4065 (2001).

    CAS  PubMed  Google Scholar 

  32. Falk, S. et al. Brain area-specific effect of TGF-β signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell 2, 472–483 (2008).

    CAS  PubMed  Google Scholar 

  33. Beynon, A.L., Thome, J. & Coogan, A.N. Age and time of day influences on the expression of transforming growth factor-β and phosphorylated SMAD3 in the mouse suprachiasmatic and paraventricular nuclei. Neuroimmunomodulation 16, 392–399 (2009).

    CAS  PubMed  Google Scholar 

  34. Padilla, S.L., Carmody, J.S. & Zeltser, L.M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Scherf, W., Burdach, S. & Hansen, G. Reduced expression of transforming growth factor β 1 exacerbates pathology in an experimental asthma model. Eur. J. Immunol. 35, 198–206 (2005).

    CAS  PubMed  Google Scholar 

  36. Thomas, M.G., Loschi, M., Desbats, M.A. & Boccaccio, G.L. RNA granules: the good, the bad and the ugly. Cell. Signal. 23, 324–334 (2011).

    CAS  PubMed  Google Scholar 

  37. Buchan, J.R. & Parker, R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932–941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141–150 (2008).

    CAS  PubMed  Google Scholar 

  39. Dai, Y. & Kamal, M.A. Fighting Alzheimer's disease and type 2 diabetes: pathological links and treatment strategies. CNS Neurol. Disord. Drug Targets 13, 271–282 (2014).

    CAS  PubMed  Google Scholar 

  40. McCrimmon, R.J., Ryan, C.M. & Frier, B.M. Diabetes and cognitive dysfunction. Lancet 379, 2291–2299 (2012).

    PubMed  Google Scholar 

  41. de la Monte, S.M. & Wands, J.R. Alzheimer's disease is type 3 diabetes—evidence reviewed. J. Diabetes Sci. Technol. 2, 1101–1113 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Luo, J. et al. Glia-dependent TGF-β signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J. Clin. Invest. 117, 3306–3315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iłzecka, J., Stelmasiak, Z. & Dobosz, B. Transforming growth factor-β1 (TGF-β1) in patients with amyotrophic lateral sclerosis. Cytokine 20, 239–243 (2002).

    PubMed  Google Scholar 

  44. Tarkowski, E. et al. Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer's disease and vascular dementia. Neurobiol. Aging 23, 237–243 (2002).

    CAS  PubMed  Google Scholar 

  45. Wyss-Coray, T., Borrow, P., Brooker, M.J. & Mucke, L. Astroglial overproduction of TGF-β1 enhances inflammatory central nervous system disease in transgenic mice. J. Neuroimmunol. 77, 45–50 (1997).

    CAS  PubMed  Google Scholar 

  46. Grammas, P. & Ovase, R. Cerebrovascular transforming growth factor-β contributes to inflammation in the Alzheimer's disease brain. Am. J. Pathol. 160, 1583–1587 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Böttinger, E.P., Letterio, J.J. & Roberts, A.B. Biology of TGF-β in knockout and transgenic mouse models. Kidney Int. 51, 1355–1360 (1997).

    PubMed  Google Scholar 

  48. Dünker, N. & Krieglstein, K. Tgfβ2−/−Tgfβ3−/− double knockout mice display severe midline fusion defects and early embryonic lethality. Anat. Embryol. (Berl.) 206, 73–83 (2002).

    Google Scholar 

  49. Heupel, K. et al. Loss of transforming growth factor-β2 leads to impairment of central synapse function. Neural Dev. 3, 25 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. Vogel, T., Ahrens, S., Buttner, N. & Krieglstein, K. Transforming growth factor β promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: identification of Nedd9 as an essential signaling component. Cereb. Cortex 20, 661–671 (2010).

    PubMed  Google Scholar 

  51. Ziyadeh, F.N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA 97, 8015–8020 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    CAS  PubMed  Google Scholar 

  54. Veldhoen, M. et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  55. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  56. Calegari, V.C. et al. Inflammation of the hypothalamus leads to defective pancreatic islet function. J. Biol. Chem. 286, 12870–12880 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Milanski, M. et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J. Neurosci. 29, 359–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ropelle, E.R. et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKβ and ER stress inhibition. PLoS Biol. 8, e1000465 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. Gao, Y. et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62, 17–25 (2014).

    PubMed  Google Scholar 

  60. Ito, Y. et al. GABA type B receptor signaling in proopiomelanocortin neurons protects against obesity, insulin resistance, and hypothalamic inflammation in male mice on a high-fat diet. J. Neurosci. 33, 17166–17173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Garcia, A.D. et al. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).

    CAS  PubMed  Google Scholar 

  62. Azhar, M. et al. Generation of mice with a conditional allele for transforming growth factor β1 gene. Genesis 47, 423–431 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshinaga, K. et al. Perturbation of transforming growth factor (TGF)- β1 association with latent TGF-β binding protein yields inflammation and tumors. Proc. Natl. Acad. Sci. USA 105, 18758–18763 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, H. et al. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation. PLoS Biol. 9, e1001112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, G. et al. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 69, 523–535 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Cai laboratory for providing technical assistance. This study was supported by US National Institutes of Health grants R01 DK078750, R01 AG031774, R01 HL113180 and R01 DK 099136 (all to D.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.C. conceived and designed the study; J.Y., H.Z., Y.Y., J.L. and Y.T. performed experiments and data analyses with experimental assistance from S.P. and L.L.; and D.C. and J.Y. wrote the paper.

Corresponding author

Correspondence to Dongsheng Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–8 (PDF 711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zhang, H., Yin, Y. et al. Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response. Nat Med 20, 1001–1008 (2014). https://doi.org/10.1038/nm.3616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing