Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-κB

An Addendum to this article was published on 04 September 2015

This article has been updated

Abstract

Aging-related bone loss and osteoporosis affect millions of people worldwide. Chronic inflammation associated with aging promotes bone resorption and impairs bone formation. Here we show that Wnt4 attenuates bone loss in osteoporosis and skeletal aging mouse models by inhibiting nuclear factor-κB (NF-κB) via noncanonical Wnt signaling. Transgenic mice expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to promoting bone formation, Wnt4 inhibited osteoclast formation and bone resorption. Mechanistically, Wnt4 inhibited NF-κB activation mediated by transforming growth factor-β–activated kinase-1 (Tak1) in macrophages and osteoclast precursors independently of β-catenin. Moreover, recombinant Wnt4 alleviated bone loss and inflammation by inhibiting NF-κB in vivo in mouse models of bone disease. Given its dual role in promoting bone formation and inhibiting bone resorption, our results suggest that Wnt4 signaling could be an attractive therapeutic target for treating osteoporosis and preventing skeletal aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt4 promotes postnatal bone formation in vivo.
Figure 2: Wnt4 attenuates osteoporosis induced by OVX.
Figure 3: Wnt4 inhibits TNF-induced bone loss and NF-κB activation.
Figure 4: Wnt4 attenuates skeletal aging by inhibiting NF-κB.
Figure 5: Wnt4 inhibits NF-κB by interfering with Tak1-Traf6 binding.
Figure 6: rWnt4 proteins attenuate established bone loss by inhibiting NF-κB.

Similar content being viewed by others

Change history

  • 04 August 2015

    In the published article, we, the authors, interpreted the data in Figure 4a–e to mean that transgenic expression of Wnt4 in osteoblasts of mice protects them from age-related bone loss. However, after publication it has been pointed out to us that, at all the ages examined, the transgenic mice had greater trabecular bone mass than control mice. Thus, we have re-examined the data in Figure 4b using statistical tests to examine the relative rate of change of bone mass and bone volume/total volume over the four age groups presented, and we find there is no statistical difference for the rate of these parameters between the transgenic and control groups. Thus, our conclusions with respect to this aspect of the study were incorrect, and further we conclude that we placed an improper emphasis on these findings in the title of the paper. We have also reanalyzed the data in the rest of the paper using more proper statistical tests in several instances. In particular, the standard deviations in Figures 1g, 1h, 2c–e, 3c–e, 4d, 4f, 6d, 6e and Supplementary Figure 6g were reported inappropriately. We used values from each histology image (3–6 images per mouse) as individual data points, instead of the mean values for each mouse, leading to an increased standard deviation. Furthermore, for morphometric and serum analysis in Figures 2, 3, 4g,h, 6 and Supplementary Figure 6, one-way analysis of variance with Tukey's post hoc test should have been used to account for multiple comparisons and adjustments for type I errors. Upon reanalysis, the comparison of osteoclast numbers/bone surface between the wild-type (WT) sham group and the Ob-Wnt4 sham group in Figure 2e, and the comparison of osteoclast surface/bone surface between the WT and Wnt4 groups in Figure 3e lost statistical significance, as was stated in the article. Although our conclusion about the effect of transgenic expression of Wnt4 in osteoblasts on skeletal aging appears to be incorrect, the above changes regarding our statistical analyses do not alter the conclusions drawn in the manuscript with respect to the effect of Wnt4 transgenic expression on bone mass compared to non-transgenic mice at static time points, the effect of recombinant Wnt4 on bone loss in the ovariectomy model nor on the molecular mechanisms for these effects. Nonetheless, we apologize for any confusion these original analyses or conclusions may have caused.

References

  1. Manolagas, S.C. & Jilka, R.L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332, 305–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 13, 791–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Manolagas, S.C. & Parfitt, A.M. What old means to bone. Trends Endocrinol. Metab. 21, 369–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chien, K.R. & Karsenty, G. Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120, 533–544 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bruunsgaard, H. et al. Predicting death from tumour necrosis factor-α and interleukin-6 in 80-year-old people. Clin. Exp. Immunol. 132, 24–31 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weitzmann, M.N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186–1194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McLean, R.R. Proinflammatory cytokines and osteoporosis. Curr. Osteoporos. Rep. 7, 134–139 (2009).

    Article  PubMed  Google Scholar 

  8. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Teitelbaum, S.L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wagner, E.F. & Karsenty, G. Genetic control of skeletal development. Curr. Opin. Genet. Dev. 11, 527–532 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Raisz, L.G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318–3325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riggs, B.L., Khosla, S. & Melton, L.J. III. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13, 763–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Khosla, S. & Riggs, B.L. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol. Metab. Clin. North Am. 34, 1015–1030 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Boyce, B.F., Yao, Z. & Xing, L. Functions of nuclear factor κB in bone. Ann. NY Acad. Sci. 1192, 367–375 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Jimi, E. & Ghosh, S. Role of nuclear factor-κB in the immune system and bone. Immunol. Rev. 208, 80–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Krum, S.A., Chang, J., Miranda-Carboni, G. & Wang, C.Y. Novel functions for NF-κB: inhibition of bone formation. Nat. Rev. Rheumatol. 6, 607–611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Almeida, M., Han, L., Ambrogini, E., Bartell, S.M. & Manolagas, S.C. Oxidative stress stimulates apoptosis and activates NF-κB in osteoblastic cells via a PKCβ/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol. Endocrinol. 24, 2030–2037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jimi, E. et al. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10, 617–624 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Q. et al. DNA damage drives accelerated bone aging via an NF-κB–dependent mechanism. J. Bone Miner. Res. 28, 1214–1228 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Chang, J. et al. Inhibition of osteoblastic bone formation by nuclear factor-κB. Nat. Med. 15, 682–689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anastas, J.N. & Moon, R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. MacDonald, B.T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Regard, J.B., Zhong, Z., Williams, B.O. & Yang, Y. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4, 1–12 (2012).

    Article  CAS  Google Scholar 

  26. Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Veeman, M.T., Axelrod, J.D. & Moon, R.T. A second canon. Functions and mechanisms of β-catenin–independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Seifert, J.R. & Mlodzik, M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat. Rev. Genet. 8, 126–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. McNeill, H. & Woodgett, J.R. When pathways collide: collaboration and connivance among signalling proteins in development. Nat. Rev. Mol. Cell Biol. 11, 404–413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lako, M. et al. Isolation, characterisation and embryonic expression of WNT11, a gene which maps to 11q13.5 and has possible roles in the development of skeleton, kidney and lung. Gene 219, 101–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Qiu, W., Chen, L. & Kassem, M. Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells. Biochem. Biophys. Res. Commun. 413, 98–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Maeda, K. et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 18, 405–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Chang, J. et al. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J. Biol. Chem. 282, 30938–30948 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Krebsbach, P.H. et al. Transgenic expression of COL1A1-chloramphenicol acetyltransferase fusion genes in bone: differential utilization of promoter elements in vivo and in cultured cells. Mol. Cell. Biol. 13, 5168–5174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, F. et al. Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int. J. Dev. Biol. 48, 645–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Khosla, S., Westendorf, J.J. & Oursler, M.J. Building bone to reverse osteoporosis and repair fractures. J. Clin. Invest. 118, 421–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Halleen, J.M. et al. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J. Bone Miner. Res. 15, 1337–1345 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Pacifici, R. et al. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc. Natl. Acad. Sci. USA 88, 5134–5138 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jilka, R.L. et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257, 88–91 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Hayward, M.D. et al. An extensive phenotypic characterization of the hTNFα transgenic mice. BMC Physiol. 7, 13 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guo, R. et al. Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J. Biol. Chem. 283, 23084–23092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao, Z., Xing, L. & Boyce, B.F. NF-κB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J. Clin. Invest. 119, 3024–3034 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pandey, A.C. et al. MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Res. Ther. 2, 49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garnero, P., Sornay-Rendu, E., Chapuy, M.C. & Delmas, P.D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Miner. Res. 11, 337–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Ginaldi, L., Di Benedetto, M.C. & De Martinis, M. Osteoporosis, inflammation and ageing. Immun. Ageing 2, 14 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lomaga, M.A. et al. TRAF6 deficiency results in osteopetrosisa and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bai, S., Zha, J., Zhao, H., Ross, F.P. & Teitelbaum, S.L. Tumor necrosis factor receptor-associated factor 6 is an intranuclear transcriptional coactivator in osteoclasts. J. Biol. Chem. 283, 30861–30867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizukami, J. et al. Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell. Biol. 22, 992–1000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nat. Cell Biol. 9, 1273–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Teitelbaum, S.L. & Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Asagiri, M. et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261–1269 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holmen, S.L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Lories, R.J., Corr, M. & Lane, N.E. To Wnt or not to Wnt: the bone and joint health dilemma. Nat. Rev. Rheumatol. 9, 328–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Winkel, A. et al. Wnt-ligand–dependent interaction of TAK1 (TGF-β–activated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell. Signal. 20, 2134–2144 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Li, M. et al. TAB2 scaffolds TAK1 and NLK in repressing canonical Wnt signaling. J. Biol. Chem. 285, 13397–13404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sugimura, R. et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150, 351–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heinonen, K.M., Vanegas, J.R., Lew, D., Krosl, J. & Perreault, C. Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway. PLoS ONE 6, e19279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fan, Z. et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat. Cell Biol. 11, 1002–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Redlich, K. et al. Osteoclasts are essential for TNF-α-mediated joint destruction. J. Clin. Invest. 110, 1419–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thwin, M.M. et al. Effect of phospholipase A2 inhibitory peptide on inflammatory arthritis in a TNF transgenic mouse model: a time-course ultrastructural study. Arthritis Res. Ther. 6, R282–R294 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, J. et al. LATS2 suppresses oncogenic Wnt signaling by disrupting β-catenin/BCL9 interaction. Cell Rep. 5, 1650–1663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Adams for valuable advice. This work was supported by the US National Institute of Dental and Craniofacial Research grants DE19412 and DE16513 (to C.-Y.W.), the US National Institute of Arthritis and Musculoskeletal and Skin Diseases grant AR63089 (to C.-Y.W.) and the UCLA Broad Stem Cell Research Center Research Award (to C.-Y.W.).

Author information

Authors and Affiliations

Authors

Contributions

B.Y., J.C., Y.L., J.L. and K.K. performed the experiments. K.A.-H., D.T.G., N.-H.P. and C.-Y.W. designed experiments and analyzed data. B.Y. and C.-Y.W. wrote the manuscript.

Corresponding author

Correspondence to Cun-Yu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 4831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Chang, J., Liu, Y. et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-κB. Nat Med 20, 1009–1017 (2014). https://doi.org/10.1038/nm.3586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing