Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye

Abstract

Two-photon excitation microscopy can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in subcellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all-trans-retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here, we report repetitive, dynamic imaging of these compounds in live mice through the pupil of the eye. By leveraging advanced adaptive optics, we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium by their characteristic localization, spectral properties and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light- and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TPM for imaging of mouse retina and RPE.
Figure 2: TPM images of ex vivo albino mouse RPE and retinas obtained through the mouse eye pupil.
Figure 3: Use of TPM imaging for ophthalmic drug screening.
Figure 4: Setup for TPM RPE imaging in living mice.

Similar content being viewed by others

References

  1. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  2. Boettner, E.A. & Wolter, J.R. Transmission of the ocular media. Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

    Google Scholar 

  3. Imanishi, Y., Batten, M.L., Piston, D.W., Baehr, W. & Palczewski, K. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J. Cell Biol. 164, 373–383 (2004).

    Article  CAS  Google Scholar 

  4. Imanishi, Y., Gerke, V. & Palczewski, K. Retinosomes: new insights into intracellular managing of hydrophobic substances in lipid bodies. J. Cell Biol. 166, 447–453 (2004).

    Article  CAS  Google Scholar 

  5. Palczewska, G. et al. Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes. Nat. Med. 16, 1444–1449 (2010).

    Article  CAS  Google Scholar 

  6. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  7. Hunter, J.J. et al. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy. Biomed. Opt. Express 2, 139–148 (2010).

    Article  Google Scholar 

  8. Godara, P., Dubis, A.M., Roorda, A., Duncan, J.L. & Carroll, J. Adaptive optics retinal imaging: emerging clinical applications. Optom. Vis. Sci. 87, 930–941 (2010).

    Article  Google Scholar 

  9. Liang, J., Williams, D.R. & Miller, D.T. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 2884–2892 (1997).

    Article  CAS  Google Scholar 

  10. Sharma, R. et al. In vivo two-photon imaging of the mouse retina. Biomed. Opt. Express 4, 1285–1293 (2013).

    Article  Google Scholar 

  11. Rueckel, M., Mack-Bucher, J.A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. USA 103, 17137–17142 (2006).

    Article  CAS  Google Scholar 

  12. Huang, S., Heikal, A.A. & Webb, W.W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002).

    Article  CAS  Google Scholar 

  13. Padayatti, P., Palczewska, G., Sun, W., Palczewski, K. & Salom, D. Imaging of protein crystals with two-photon microscopy. Biochemistry 51, 1625–1637 (2012).

    Article  CAS  Google Scholar 

  14. Kiser, P.D., Golczak, M., Maeda, A. & Palczewski, K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim. Biophys. Acta 1821, 137–151 (2012).

    Article  CAS  Google Scholar 

  15. Palczewski, K. Chemistry and biology of vision. J. Biol. Chem. 287, 1612–1619 (2012).

    Article  CAS  Google Scholar 

  16. von Lintig, J., Kiser, P.D., Golczak, M. & Palczewski, K. The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. Trends Biochem. Sci. 35, 400–410 (2010).

    Article  CAS  Google Scholar 

  17. Sparrow, J.R., Wu, Y., Kim, C.Y. & Zhou, J. Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J. Lipid Res. 51, 247–261 (2010).

    Article  CAS  Google Scholar 

  18. Maeda, A. et al. Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat. Chem. Biol. 8, 170–178 (2011).

    Article  Google Scholar 

  19. Maeda, T. et al. QLT091001, a 9-cis-retinal analog, is well-tolerated by retinas of mice with impaired visual cycles. Invest. Ophthalmol. Vis. Sci. 54, 455–466 (2013).

    Article  CAS  Google Scholar 

  20. Golczak, M., Kuksa, V., Maeda, T., Moise, A.R. & Palczewski, K. Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proc. Natl. Acad. Sci. USA 102, 8162–8167 (2005).

    Article  CAS  Google Scholar 

  21. Lin, B., Wang, S.W. & Masland, R.H. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43, 475–485 (2004).

    Article  CAS  Google Scholar 

  22. Euler, T. et al. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch. 457, 1393–1414 (2009).

    Article  CAS  Google Scholar 

  23. Bueno, J.M., Gualda, E.J. & Artal, P. Adaptive optics multiphoton microscopy to study ex vivo ocular tissues. J. Biomed. Opt. 15, 066004 (2010).

    Article  Google Scholar 

  24. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).

    Article  CAS  Google Scholar 

  25. Sun, W., Li, N. & He, S. Large-scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451, 115–126 (2002).

    Article  Google Scholar 

  26. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  27. Chan, F., Bradley, A., Wensel, T.G. & Wilson, J.H. Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy. Proc. Natl. Acad. Sci. USA 101, 9109–9114 (2004).

    Article  CAS  Google Scholar 

  28. Spiess, E. et al. Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J. Microsc. 217, 200–204 (2005).

    Article  CAS  Google Scholar 

  29. Schmucker, C. & Schaeffel, F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res. 44, 1857–1867 (2004).

    Article  Google Scholar 

  30. Katz, M.L. & Redmond, T.M. Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 42, 3023–3030 (2001).

    CAS  PubMed  Google Scholar 

  31. Drabent, R., Bryl, K., Smyk, B. & Ulbrych, K. Retinyl palmitate in water environment. J. Photochem. Photobiol. B 37, 254–260 (1997).

    Article  CAS  Google Scholar 

  32. Chen, C. et al. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. Biophys. J. 88, 2278–2287 (2005).

    Article  CAS  Google Scholar 

  33. Moroni, L., Gellini, C., Salvi, P.R. & Schettino, V. Fluorescence of all-trans-retinal as a crystal and in a dense solution phase. J. Phys. Chem. A 104, 11063–11069 (2000).

    Article  CAS  Google Scholar 

  34. Keilhauer, C.N. & Delori, F.C. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest. Ophthalmol. Vis. Sci. 47, 3556–3564 (2006).

    Article  Google Scholar 

  35. London, A., Benhar, I. & Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9, 44–53 (2013).

    Article  CAS  Google Scholar 

  36. Kocaoglu, O.P. et al. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed. Opt. Express 2, 748–763 (2011).

    Article  Google Scholar 

  37. Carroll, J. et al. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. Invest. Ophthalmol. Vis. Sci. 53, 8006–8015 (2012).

    Article  CAS  Google Scholar 

  38. Delori, F.C., Webb, R.H., Sliney, D.H. & American National Standards, I. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 1250–1265 (2007).

    Article  Google Scholar 

  39. Geng, Y. et al. Adaptive optics retinal imaging in the living mouse eye. Biomed. Opt. Express 3, 715–734 (2012).

    Article  Google Scholar 

  40. Xi, P., Andegeko, Y., Pestov, D., Lovozoy, V.V. & Dantus, M. Two-photon imaging using adaptive phase compensated ultrashort laser pulses. J. Biomed. Opt. 14, 014002 (2009).

    Article  Google Scholar 

  41. Golczak, M. et al. Lecithin:retinol acyltransferase is responsible for amidation of retinylamine, a potent inhibitor of the retinoid cycle. J. Biol. Chem. 280, 42263–42273 (2005).

    Article  CAS  Google Scholar 

  42. Maeda, A. et al. Effects of potent inhibitors of the retinoid cycle on visual function and photoreceptor protection from light damage in mice. Mol. Pharmacol. 70, 1220–1229 (2006).

    Article  CAS  Google Scholar 

  43. Zhang, Y., Poonja, S. & Roorda, A. MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt. Lett. 31, 1268–1270 (2006).

    Article  Google Scholar 

  44. Remtulla, S. & Hallett, P.E. A schematic eye for the mouse, and comparisons with the rat. Vision Res. 25, 21–31 (1985).

    Article  CAS  Google Scholar 

  45. Thibos, L.N. et al. Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 18, S652–S660 (2002).

    PubMed  Google Scholar 

  46. Sun, Y., Duthaler, S. & Nelson, B.J. Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc. Res. Tech. 65, 139–149 (2004).

    Article  Google Scholar 

  47. Vorontsov, M.A. & Sivokon, V.P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 2745–2758 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Redmond (National Eye Institute of the US National Institutes of Health (NIH)) for Rpe65−/− mice and J. Wilson (Baylor College of Medicine) for GFP-rhodopsin mice. We also thank the team at Bioptigen for advice on preparation of mice for live animal imaging, D. Piston for stimulating discussion and L.T. Webster Jr. and members of K.P.'s laboratory and Polgenix's team for critical comments on the manuscript. Research reported in this publication was supported by the National Eye Institute of the NIH under award numbers R01EY008061, R01EY009339, R24EY021126 and P30EY11373 and by the National Institute on Aging of the NIH under award number R44AG043645. N.S.A. was supported by NIH institutional training grants 5T32EY007157 and 5T32DK007319.

Author information

Authors and Affiliations

Authors

Contributions

G.P. and K.P. conceived and directed the project. G.P., M.G., Z.D. and N.S.A. designed and conducted experiments, and generated software. G.P., N.S.A. and K.P. prepared the manuscript. J.J.H. and D.R.W. edited the manuscript.

Corresponding author

Correspondence to Krzysztof Palczewski.

Ethics declarations

Competing interests

G.P. and Z.D. are employees of Polgenix. K.P. is Chief Scientific Officer at Polgenix. K.P. is an inventor of the U.S. patent no. 7,706,863 and U.S. patent no. 8,346,345, whose values may be affected by this publication. The laboratories of J.J.H and D.R.W. received support from Polgenix.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 990 kb)

Imaging retina at different depths.

50 images were obtained ex vivo along the z axis in an eye of a 2-month-old WT mouse. Details of different layers come into focus as the z-axis translation stage moves at even intervals. The first image shows the nerve fiber layer and the 50th image is just behind RPE. The optic disc is in the top right corner. (WMV 3205 kb)

Stochastic parallel gradient descent (SPGD) optimization of imaging Rpe65−/− mice.

Forty steps of optimization were conducted, and the corresponding forty images for the trajectory are shown. The 30th image is the one with the best normalized variance (shown in Fig. 4c). (WMV 6425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palczewska, G., Dong, Z., Golczak, M. et al. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat Med 20, 785–789 (2014). https://doi.org/10.1038/nm.3590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing