Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased gene copy number of VAMP7 disrupts human male urogenital development through altered estrogen action

Abstract

Despite the fact that genitourinary defects are among the most common birth defects in newborns, little is known about their etiology. Here we analyzed children born with congenital genitourinary tract masculinization disorders by array-comparative genomic hybridization, which revealed in 1.35% of cases the presence of de novo copy number gains at Xq28 encompassing the VAMP7 gene, which encodes a vesicle-trafficking protein that is part of the SNARE complex. Transgenic mice carrying a bacterial artificial chromosome encoding human VAMP7 mimicked the defective urogenital traits observed in boys with masculinization disorders such as cryptorchidism, urethral defects and hypospadias. Transgenic mice also exhibited reduced penile length, focal spermatogenic anomalies, diminished sperm motility and subfertility. VAMP7 colocalized with estrogen receptor α (ESR1) in the presence of its cognate ligand, 17β-estradiol. Elevated levels of VAMP7 markedly intensified ESR1-potentiated transcriptional activity by increasing ESR1 protein cellular content upon ligand stimulation and upregulated the expression of estrogen-responsive genes including ATF3, CYR61 and CTGF, all of which have been implicated in human hypospadias. Hence, increased gene dosage of VAMP7, and thus higher expression levels of its protein product, enhances estrogen receptor action in male genitourinary tissues, affects the virilization of the reproductive tract and results in genitourinary birth defects in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A terminal Xq28 gain encompassing VAMP7 in 46,XY children presenting with masculinization disorders of the urogenital tract.
Figure 2: VAMP7 is present in human and mouse male reproductive tissues.
Figure 3: Mice overexpressing VAMP7 exhibit cryptorchidism and abnormal external genitalia.
Figure 4: Elevated levels of VAMP7 modestly impair AR function.
Figure 5: VAMP7 enhances estrogen receptor transcriptional activity.
Figure 6: Abnormal spermatogenesis and reduced motility and fertility in V7BAC mice.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Sharpe, R.M. & Skakkebaek, N.E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341, 1392–1395 (1993).

    CAS  PubMed  Google Scholar 

  2. Wilhelm, D. & Koopman, P. The makings of maleness: towards an integrated view of male sexual development. Nat. Rev. Genet. 7, 620–631 (2006).

    CAS  PubMed  Google Scholar 

  3. Vidaeff, A.C. & Sever, L.E. In utero exposure to environmental estrogens and male reproductive health: a systematic review of biological and epidemiologic evidence. Reprod. Toxicol. 20, 5–20 (2005).

    CAS  PubMed  Google Scholar 

  4. Storgaard, L., Bonde, J.P. & Olsen, J. Male reproductive disorders in humans and prenatal indicators of estrogen exposure. A review of published epidemiological studies. Reprod. Toxicol. 21, 4–15 (2006).

    CAS  PubMed  Google Scholar 

  5. McLachlan, J.A., Newbold, R.R. & Bullock, B. Reproductive tract lesions in male mice exposed prenatally to diethylstilbestrol. Science 190, 991–992 (1975).

    CAS  PubMed  Google Scholar 

  6. Goyal, H.O. et al. Estrogen receptor α mediates estrogen-inducible abnormalities in the developing penis. Reproduction 133, 1057–1067 (2007).

    CAS  PubMed  Google Scholar 

  7. Goyal, H.O., Braden, T.D., Williams, C.S. & Williams, J.W. Estrogen-induced developmental disorders of the rat penis involve both estrogen receptor (ESR)- and androgen receptor (AR)-mediated pathways. Biol. Reprod. 81, 507–516 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Simon, L. et al. Exposure of neonatal rats to anti-androgens induces penile mal-developments and infertility comparable to those induced by oestrogens. Int. J. Androl. 35, 364–376 (2012).

    CAS  PubMed  Google Scholar 

  9. Li, X. et al. Altered structure and function of reproductive organs in transgenic male mice overexpressing human aromatase. Endocrinology 142, 2435–2442 (2001).

    CAS  PubMed  Google Scholar 

  10. Kloepper, T.H., Kienle, C.N. & Fasshauer, D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463–3471 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pryor, P.R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pryor, P.R. et al. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep. 5, 590–595 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Advani, R.J. et al. VAMP-7 mediates vesicular transport from endosomes to lysosomes. J. Cell Biol. 146, 765–776 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rao, S.K., Huynh, C., Proux-Gillardeaux, V., Galli, T. & Andrews, N.W. Identification of SNAREs involved in synaptotagmin VII–regulated lysosomal exocytosis. J. Biol. Chem. 279, 20471–20479 (2004).

    CAS  PubMed  Google Scholar 

  15. Fader, C.M., Sanchez, D.G., Mestre, M.B. & Colombo, M.I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793, 1901–1916 (2009).

    CAS  PubMed  Google Scholar 

  16. Moreau, K., Ravikumar, B., Renna, M., Puri, C. & Rubinsztein, D.C. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tannour-Louet, M. et al. Identification of de novo copy number variants associated with human disorders of sexual development. PLoS ONE 5, e15392 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Shono, T. et al. Scanning electron microscopy shows inhibited gubernacular development in relation to undescended testes in oestrogen-treated mice. Int. J. Androl. 19, 263–270 (1996).

    CAS  PubMed  Google Scholar 

  19. Nef, S., Shipman, T. & Parada, L.F. A molecular basis for estrogen-induced cryptorchidism. Dev. Biol. 224, 354–361 (2000).

    CAS  PubMed  Google Scholar 

  20. Jiang, X.W., Li, J.H., Huang, T.H. & Deng, W.D. Effect of prenatal exposure to diethylstilbestrol on gubernacular development in fetal male mice. Asian J. Androl. 6, 325–329 (2004).

    CAS  PubMed  Google Scholar 

  21. Cederroth, C.R. et al. Estrogen receptor α is a major contributor to estrogen-mediated fetal testis dysgenesis and cryptorchidism. Endocrinology 148, 5507–5519 (2007).

    CAS  PubMed  Google Scholar 

  22. Kent, H.M. et al. Structural basis of the intracellular sorting of the SNARE VAMP7 by the AP3 adaptor complex. Dev. Cell 22, 979–988 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Magee, J.A., Chang, L.W., Stormo, G.D. & Milbrandt, J. Direct, androgen receptor–mediated regulation of the FKBP5 gene via a distal enhancer element. Endocrinology 147, 590–598 (2006).

    CAS  PubMed  Google Scholar 

  24. Makkonen, H., Kauhanen, M., Paakinaho, V., Jaaskelainen, T. & Palvimo, J.J. Long-range activation of FKBP51 transcription by the androgen receptor via distal intronic enhancers. Nucleic Acids Res. 37, 4135–4148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, H. et al. Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis. J. Biol. Chem. 285, 27776–27784 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishida, H. et al. Gene expression analyses on embryonic external genitalia: identification of regulatory genes possibly involved in masculinization processes. Congenit. Anom. (Kyoto) 48, 63–67 (2008).

    CAS  Google Scholar 

  27. Miyagawa, S. et al. The role of sonic hedgehog–Gli2 pathway in the masculinization of external genitalia. Endocrinology 152, 2894–2903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rivas, A., Fisher, J.S., McKinnell, C., Atanassova, N. & Sharpe, R.M. Induction of reproductive tract developmental abnormalities in the male rat by lowering androgen production or action in combination with a low dose of diethylstilbestrol: evidence for importance of the androgen-estrogen balance. Endocrinology 143, 4797–4808 (2002).

    CAS  PubMed  Google Scholar 

  29. Wang, Z. et al. Up-regulation of estrogen responsive genes in hypospadias: microarray analysis. J. Urol. 177, 1939–1946 (2007).

    CAS  PubMed  Google Scholar 

  30. Liu, B. et al. Estradiol upregulates activating transcription factor 3, a candidate gene in the etiology of hypospadias. Pediatr. Dev. Pathol. 10, 446–454 (2007).

    CAS  PubMed  Google Scholar 

  31. Liu, B. et al. Activating transcription factor 3 is up-regulated in patients with hypospadias. Pediatr. Res. 58, 1280–1283 (2005).

    CAS  PubMed  Google Scholar 

  32. Liu, B., Agras, K., Willingham, E., Vilela, M.L. & Baskin, L.S. Activating transcription factor 3 is estrogen-responsive in utero and upregulated during sexual differentiation. Horm. Res. 65, 217–222 (2006).

    CAS  PubMed  Google Scholar 

  33. Gurbuz, C. et al. Is activating transcription factor 3 up-regulated in patients with hypospadias? Korean J. Urol. 51, 561–564 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Kalfa, N. et al. Genomic variants of ATF3 in patients with hypospadias. J. Urol. 180, 2183–2188, discussion 2188 (2008).

    CAS  PubMed  Google Scholar 

  35. Beleza-Meireles, A. et al. Activating transcription factor 3: a hormone responsive gene in the etiology of hypospadias. Eur. J. Endocrinol. 158, 729–739 (2008).

    CAS  PubMed  Google Scholar 

  36. Thenot, S., Charpin, M., Bonnet, S. & Cavailles, V. Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol. Cell. Endocrinol. 156, 85–93 (1999).

    CAS  PubMed  Google Scholar 

  37. Lambard, S. et al. Aromatase in testis: expression and role in male reproduction. J. Steroid Biochem. Mol. Biol. 95, 63–69 (2005).

    CAS  PubMed  Google Scholar 

  38. Song, W.C., Qian, Y., Sun, X. & Negishi, M. Cellular localization and regulation of expression of testicular estrogen sulfotransferase. Endocrinology 138, 5006–5012 (1997).

    CAS  PubMed  Google Scholar 

  39. Hazary, S. & Gardner, W.U. Influence of sex hormones on abdominal musculature and the formation of inguinal and scrotal hernias in mice. Anat. Rec. 136, 437–443 (1960).

    CAS  PubMed  Google Scholar 

  40. Reinert, R.B. et al. Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLoS ONE 7, e33529 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, X. & Rahman, N. Impact of androgen/estrogen ratio: lessons learned from the aromatase over-expression mice. Gen. Comp. Endocrinol. 159, 1–9 (2008).

    CAS  PubMed  Google Scholar 

  42. Wang, H. et al. The stress response mediator ATF3 represses androgen signaling by binding the androgen receptor. Mol. Cell. Biol. 32, 3190–3202 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Girirajan, S., Campbell, C.D. & Eichler, E.E. Human copy number variation and complex genetic disease. Annu. Rev. Genet. 45, 203–226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferlin, A. et al. Genetic alterations associated with cryptorchidism. J. Am. Med. Assoc. 300, 2271–2276 (2008).

    CAS  Google Scholar 

  45. Hadziselimovic, F. et al. EGR4 is a master gene responsible for fertility in cryptorchidism. Sex Dev. 3, 253–263 (2009).

    CAS  PubMed  Google Scholar 

  46. Hadziselimovic, F., Hadziselimovic, N.O., Demougin, P. & Oakeley, E.J. Testicular gene expression in cryptorchid boys at risk of azoospermia. Sex Dev. 5, 49–59 (2011).

    CAS  PubMed  Google Scholar 

  47. Mills, I.G. et al. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors. J. Cell Biol. 170, 191–200 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ray, M.R. et al. Cyclin G–associated kinase: a novel androgen receptor–interacting transcriptional coactivator that is overexpressed in hormone refractory prostate cancer. Int. J. Cancer 118, 1108–1119 (2006).

    CAS  PubMed  Google Scholar 

  49. Jasavala, R. et al. Identification of putative androgen receptor interaction protein modules: cytoskeleton and endosomes modulate androgen receptor signaling in prostate cancer cells. Mol. Cell. Proteomics 6, 252–271 (2007).

    CAS  PubMed  Google Scholar 

  50. Kang, J. et al. A nuclear function of β-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123, 833–847 (2005).

    CAS  PubMed  Google Scholar 

  51. Yang, L. et al. APPL suppresses androgen receptor transactivation via potentiating Akt activity. J. Biol. Chem. 278, 16820–16827 (2003).

    CAS  PubMed  Google Scholar 

  52. Enari, M., Ohmori, K., Kitabayashi, I. & Taya, Y. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev. 20, 1087–1099 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wei, X., Xu, H. & Kufe, D. MUC1 oncoprotein stabilizes and activates estrogen receptor α. Mol. Cell 21, 295–305 (2006).

    CAS  PubMed  Google Scholar 

  54. Reid, G. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol. Cell 11, 695–707 (2003).

    CAS  PubMed  Google Scholar 

  55. Lonard, D.M., Nawaz, Z., Smith, C.L. & O'Malley, B.W. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 5, 939–948 (2000).

    CAS  PubMed  Google Scholar 

  56. Nawaz, Z., Lonard, D.M., Dennis, A.P., Smith, C.L. & O'Malley, B.W. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA 96, 1858–1862 (1999).

    CAS  PubMed  Google Scholar 

  57. Korolchuk, V.I., Menzies, F.M. & Rubinsztein, D.C. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393–1398 (2010).

    CAS  PubMed  Google Scholar 

  58. Korolchuk, V.I., Mansilla, A., Menzies, F.M. & Rubinsztein, D.C. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517–527 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ou, Z. et al. Branchiootorenal syndrome and oculoauriculovertebral spectrum features associated with duplication of SIX1, SIX6, and OTX2 resulting from a complex chromosomal rearrangement. Am. J. Med. Genet. A 146A, 2480–2489 (2008).

    PubMed  Google Scholar 

  60. Ou, Z. et al. Bacterial artificial chromosome-emulation oligonucleotide arrays for targeted clinical array-comparative genomic hybridization analyses. Genet. Med. 10, 278–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the referring physicians and especially E.T. Gonzales, L. Cisek, N. Janzen, D.R. Roth, and E. Jones, the affected individuals and their family members who participated in this study. We thank M. Marcelli (Baylor College of Medicine) for providing the foreskin fibroblasts for analysis. We thank L. White, C. Shaw and F. De Mayo for their assistance. This study was supported in part by US National Institutes of Health grant K12 DK0083014 (KURe to D.J.L.) and R01DK078121 from the National Institute of Diabetes and Digestive and Kidney Diseases (to D.J.L.).

Author information

Authors and Affiliations

Authors

Contributions

Both senior authors, M.T.-L. and D.J.L., conceived and supervised the study, conducted experiments, analyzed data and wrote and revised the manuscript. S.H. and J.-F.L. performed experiments and analyzed data. B.Z., K.R., J.A. and A.S. performed experiments. S.W.C. conducted the human CGH array studies.

Corresponding authors

Correspondence to Mounia Tannour-Louet or Dolores J Lamb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 17649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tannour-Louet, M., Han, S., Louet, JF. et al. Increased gene copy number of VAMP7 disrupts human male urogenital development through altered estrogen action. Nat Med 20, 715–724 (2014). https://doi.org/10.1038/nm.3580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing