Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis

Subjects

Abstract

Leptin treatment reverses hyperglycemia in animal models of poorly controlled type 1 diabetes (T1D)1,2,3,4,5,6, spurring great interest in the possibility of treating patients with this hormone. The antidiabetic effect of leptin has been postulated to occur through suppression of glucagon production, suppression of glucagon responsiveness or both; however, there does not appear to be a direct effect of leptin on the pancreatic alpha cell7. Thus, the mechanisms responsible for the antidiabetic effect of leptin remain poorly understood. We quantified liver-specific rates of hepatic gluconeogenesis and substrate oxidation in conjunction with rates of whole-body acetate, glycerol and fatty acid turnover in three rat models of poorly controlled diabetes, including a model of diabetic ketoacidosis8. We show that the higher rates of hepatic gluconeogenesis in all these models could be attributed to hypoleptinemia-induced activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in higher rates of adipocyte lipolysis, hepatic conversion of glycerol to glucose through a substrate push mechanism and conversion of pyruvate to glucose through greater hepatic acetyl-CoA allosteric activation of pyruvate carboxylase flux. Notably, these effects could be dissociated from changes in plasma insulin and glucagon concentrations and hepatic gluconeogenic protein expression. All the altered systemic and hepatic metabolic fluxes could be mimicked by infusing rats with Intralipid or corticosterone and were corrected by leptin replacement. These data demonstrate a critical role for lipolysis and substrate delivery to the liver, secondary to hypoleptinemia and HPA axis activity, in promoting higher hepatic gluconeogenesis and hyperglycemia in poorly controlled diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leptin reverses hyperglycemia and excess gluconeogenesis from pyruvate and glycerol in rats with streptozotocin-induced T1D.
Figure 2: Lipid infusion for 24 h in rats fed a HFD for 3 d replicates the perturbations to fluxes seen in type 1 diabetics and hyperinsulinemic-diabetic rats and implicates increased substrate supply in the excess gluconeogenesis of T1D.
Figure 3: Substrate (Intralipid and heparin) infusion blocks the effect of leptin to suppress hepatic gluconeogenesis in rats with T1D.
Figure 4: Matching plasma corticosterone in 3-d HFD-fed corticosterone-infused rats to that of rats with T1D drives excess lipolysis, gluconeogenesis and hyperglycemia.

Similar content being viewed by others

References

  1. Fujikawa, T. et al. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab. 18, 431–444 (2013).

    Article  CAS  Google Scholar 

  2. Meek, T.H. et al. Leptin action in the ventromedial hypothalamic nucleus is sufficient, but not necessary, to normalize diabetic hyperglycemia. Endocrinology 154, 3067–3076 (2013).

    Article  CAS  Google Scholar 

  3. Fujikawa, T., Chuang, J.C., Sakata, I., Ramadori, G. & Coppari, R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc. Natl. Acad. Sci. USA 107, 17391–17396 (2010).

    Article  CAS  Google Scholar 

  4. Wang, M.Y. et al. Leptin therapy in insulin-deficient type I diabetes. Proc. Natl. Acad. Sci. USA 107, 4813–4819 (2010).

    Article  CAS  Google Scholar 

  5. Chinookoswong, N., Wang, J.L. & Shi, Z.Q. Leptin restores euglycemia and normalizes glucose turnover in insulin-deficient diabetes in the rat. Diabetes 48, 1487–1492 (1999).

    Article  CAS  Google Scholar 

  6. Lin, C.Y., Higginbotham, D.A., Judd, R.L. & White, B.D. Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 282, E1084–E1091 (2002).

    Article  CAS  Google Scholar 

  7. Chen, L., Philippe, J. & Unger, R.H. Glucagon responses of isolated alpha cells to glucose, insulin, somatostatin, and leptin. Endocr. Prac. 17, 819–825 (2011).

    Article  Google Scholar 

  8. Craighead, J.E. Experimental models of juvenile onset (insulin-dependent) diabetes mellitus. Monogr. Pathol. 21, 166–176 (1980).

    CAS  PubMed  Google Scholar 

  9. Utter, M.F. & Keech, D.B. Formation of oxaloacetate from pyruvate and carbon dioxide. J. Biol. Chem. 235, PC17–PC18 (1960).

    CAS  PubMed  Google Scholar 

  10. Scrutton, M.C. & White, M.D. Pyruvate carboxylase from rat liver: catalytic properties in the absence, and at low concentrations, of acetyl-CoA. Biochem. Biophys. Res. Commun. 48, 85–93 (1972).

    Article  CAS  Google Scholar 

  11. McClure, W.R., Lardy, H.A. & Kneifel, H.P. Rat liver pyruvate carboxylase. I. Preparation, properties, and cation specificity. J. Biol. Chem. 246, 3569–3578 (1971).

    CAS  PubMed  Google Scholar 

  12. Warren, G.B. & Tipton, K.F. Pig liver pyruvate carboxylase. The reaction pathway for the carboxylation of pyruvate. Biochem. J. 139, 311–320 (1974).

    Article  CAS  Google Scholar 

  13. Sugden, M.C. & Holness, M.J. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 284, E855–E862 (2003).

    Article  CAS  Google Scholar 

  14. Kitabchi, A.E. & Wall, B.M. Diabetic ketoacidosis. Med. Clin. North Am. 79, 9–37 (1995).

    Article  CAS  Google Scholar 

  15. Minokoshi, Y., Toda, C. & Okamoto, S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J. Endocrinol. Metab. 16, S562–S568 (2012).

    Article  Google Scholar 

  16. Toda, C. et al. Extracellular signal-regulated kinase in the ventromedial hypothalamus mediates leptin-induced glucose uptake in red-type skeletal muscle. Diabetes 62, 2295–2307 (2013).

    Article  CAS  Google Scholar 

  17. Laker, R.C. et al. Central infusion of leptin does not increase AMPK signaling in skeletal muscle of sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R511–R518 (2011).

    Article  CAS  Google Scholar 

  18. Previs, S.F., Cline, G.W. & Shulman, G.I. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. Am. J. Physiol. 277, E154–E160 (1999).

    CAS  PubMed  Google Scholar 

  19. Boden, G., Chen, X., Rosner, J. & Barton, M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes 44, 1239–1242 (1995).

    Article  CAS  Google Scholar 

  20. Dubuc, P.U. Basal corticosterone levels of young og/ob mice. Horm. Metab. Res. 9, 95–97 (1977).

    Article  CAS  Google Scholar 

  21. Coleman, D.L. & Burkart, D.L. Plasma corticosterone concentrations in diabetic (db) mice. Diabetologia 13, 25–26 (1977).

    Article  CAS  Google Scholar 

  22. Szücs, N. et al. Leptin inhibits cortisol and corticosterone secretion in pathologic human adrenocortical cells. Pituitary 4, 71–77 (2001).

    Article  Google Scholar 

  23. Loose, D.S., Stover, E.P. & Feldman, D. Ketoconazole binds to glucocorticoid receptors and exhibits glucocorticoid antagonist activity in cultured cells. J. Clin. Invest. 72, 404–408 (1983).

    Article  CAS  Google Scholar 

  24. da Silva, A.A., Tallam, L.S., Liu, J. & Hall, J.E. Chronic antidiabetic and cardiovascular actions of leptin: role of CNS and increased adrenergic activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1275–R1282 (2006).

    Article  CAS  Google Scholar 

  25. Wang, J., Wernette, C.M., Judd, R.L., Huggins, K.W. & White, B.D. Guanethidine treatment does not block the ability of central leptin administration to decrease blood glucose concentrations in streptozotocin-induced diabetic rats. J. Endocrinol. 198, 541–548 (2008).

    Article  CAS  Google Scholar 

  26. Hathout, E.H. et al. Changes in plasma leptin during the treatment of diabetic ketoacidosis. J. Clin. Endocrinol. Metab. 84, 4545–4548 (1999).

    Article  CAS  Google Scholar 

  27. Kratzsch, J. et al. Metabolic decompensation in children with type 1 diabetes mellitus associated with increased serum levels of the soluble leptin receptor. Eur. J. Endocrinol. 155, 609–614 (2006).

    Article  CAS  Google Scholar 

  28. Kitabchi, A.E. & Umpierrez, G.E. Changes in serum leptin in lean and obese subjects with acute hyperglycemic crises. J. Clin. Endocrinol. Metab. 88, 2593–2596 (2003).

    Article  CAS  Google Scholar 

  29. Petersen, K.F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).

    Article  CAS  Google Scholar 

  30. Perry, R.J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18, 740–748 (2013).

    Article  CAS  Google Scholar 

  31. Erion, D.M. et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology 154, 36–44 (2013).

    Article  CAS  Google Scholar 

  32. Alves, T.C. et al. Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance. Hepatology 53, 1175–1181 (2011).

    Article  CAS  Google Scholar 

  33. Jurczak, M.J. et al. Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J. Biol. Chem. 287, 2558–2567 (2012).

    Article  CAS  Google Scholar 

  34. Jucker, B.M., Rennings, A.J., Cline, G.W., Petersen, K.F. & Shulman, G.I. In vivo NMR investigation of intramuscular glucose metabolism in conscious rats. Am. J. Physiol. 273, E139–E148 (1997).

    CAS  PubMed  Google Scholar 

  35. Hosokawa, Y., Shimomura, Y., Harris, R.A. & Ozawa, T. Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography. Anal. Biochem. 153, 45–49 (1986).

    Article  CAS  Google Scholar 

  36. Roughan, G. A semi-preparative enzymic synthesis of malonyl-CoA from [14C]acetate and 14CO2: labelling in the 1, 2 or 3 position. Biochem. J. 300, 355–358 (1994).

    Article  CAS  Google Scholar 

  37. Kumashiro, N. et al. Role of patatin-like phospholipase domain-containing 3 on lipid-induced hepatic steatosis and insulin resistance in rats. Hepatology 57, 1763–1772 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Samuel, D. Befroy and K. Petersen for helpful discussions and J. Dong, Y. Kosover, M. Kahn, B. Perler, J. Stack and M. Batsu for expert technical support. This study was funded by grants from the US National Institutes of Health (R01 DK-40936, R24 DK-085638, U24 DK-059635 and P30 DK-45735), an American Diabetes Association–Merck Clinical/Translational Science Postdoctoral Fellowship Award from the American Diabetes Association and the Novo Nordisk Foundation for Basic Metabolic Research.

Author information

Authors and Affiliations

Authors

Contributions

R.J.P. and G.I.S. designed the experimental protocols. R.J.P., X.-M.Z., D.Z., N.K., J.-P.G.C. and G.W.C. performed the studies. All authors contributed to the analysis of data. R.J.P. and G.I.S. wrote the manuscript.

Corresponding author

Correspondence to Gerald I Shulman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–2 (PDF 678 kb)

Supplementary Methods

Supplementary Methods (PDF 685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, R., Zhang, XM., Zhang, D. et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med 20, 759–763 (2014). https://doi.org/10.1038/nm.3579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing