Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA

Abstract

Assessment of KRAS status is mandatory in patients with metastatic colorectal cancer (mCRC) before applying targeted therapy. We describe here a blinded prospective study to compare KRAS and BRAF mutation status data obtained from the analysis of tumor tissue by routine gold-standard methods and of plasma DNA using a quantitative PCR–based method specifically designed to analyze circulating cell-free DNA (cfDNA). The mutation status was determined by both methods from 106 patient samples. cfDNA analysis showed 100% specificity and sensitivity for the BRAF V600E mutation. For the seven tested KRAS point mutations, the method exhibited 98% specificity and 92% sensitivity with a concordance value of 96%. Mutation load, expressed as the proportion of mutant alleles in cfDNA, was highly variable (0.5–64.1%, median 10.5%) among mutated samples. CfDNA was detected in 100% of patients with mCRC. This study shows that liquid biopsy through cfDNA analysis could advantageously replace tumor-section analysis and expand the scope of personalized medicine for patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the methodology and the analysis of point mutation detection from plasma.
Figure 2: Quantitative analysis of the plasma from patients with mutant tumors, as determined by Intplex.

Similar content being viewed by others

References

  1. Lièvre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66, 3992–3995 (2006).

    Article  PubMed  Google Scholar 

  2. Amado, R.G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Karapetis, C.S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Bando, H. et al. KRAS mutations detected by the amplification refractory mutation system-Scorpion assays strongly correlate with therapeutic effect of cetuximab. Br. J. Cancer 105, 403–406 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pritchard, C.C. & Grady, W.M. Colorectal cancer molecular biology moves into clinical practice. Gut 60, 116–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Van Cutsem, E. et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol. 29, 2011–2019 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Laurent-Puig, P. et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J. Clin. Oncol. 27, 5924–5930 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Bibeau, F. et al. Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. 27, 1122–1129 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Kobunai, T., Watanabe, T., Yamamoto, Y. & Eshima, K. The frequency of KRAS mutation detection in human colon carcinoma is influenced by the sensitivity of assay methodology: a comparison between direct sequencing and real-time PCR. Biochem. Biophys. Res. Commun. 395, 158–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Pinto, P. et al. Comparison of methodologies for KRAS mutation detection in metastatic colorectal cancer. Cancer Genetics 204, 439–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Weichert, W. et al. KRAS genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics: comparison of methods and impact of histology. J. Mol. Diagn. 12, 35–42 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boissière-Michot, F. et al. KRAS genotyping in rectal adenocarcinoma specimens with low tumor cellularity after neoadjuvant treatment. Mod. Pathol. 25, 731–739 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Artru, P. et al. Review of the current status of KRAS mutation testing in France in 2011: The Flash-KRAS study. J. Clin. Oncol. 30 (suppl.), e14129 (2012).

    Google Scholar 

  14. Stroun, M., Anker, P., Lyautey, J., Lederrey, C. & Maurice, P.A. isolation and characterization of dna from the plasma of cancer-patients. Eur. J. Cancer Clin. Oncol. 23, 707–712 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Lecomte, T. et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int. J. Cancer 100, 542–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lefebure, B. et al. Prognostic value of circulating mutant DNA in unresectable metastatic colorectal cancer. Ann. Surg. 251, 275–280 (2010).

    Article  PubMed  Google Scholar 

  17. Thierry, A.R. et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 38, 6159–6175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwarzenbach, H., Hoon, D.S.B. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Mead, R., Duku, M., Bhandari, P. & Cree, I.A. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br. J. Cancer 105, 239–245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Mouliere, F. et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS One 6, e23418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mouliere, F. & Thierry, A.R. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin. Biol. Ther. 12 (suppl. 1), S209–S215 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Trevisiol, C. et al. Prognostic value of circulating KRAS2 gene mutations in colorectal cancer with distant metastases. Int. J. Biol. Markers 21, 223–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Ryan, B.M. et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut 52, 101–108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yen, L.C. et al. Detection of KRAS oncogene in peripheral blood as a predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin. Cancer Res. 15, 4508–4513 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Spindler, K.L.G., Pallisgaard, N., Vogelius, I. & Jakobsen, A. quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin. Cancer Res. 18, 1177–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, M.J. et al. Different metastatic pattern according to the KRAS mutational status and site-specific discordance of KRAS status in patients with colorectal cancer. BMC Cancer 12, 347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knijn, N. et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br. J. Cancer 104, 1020–1026 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oltedal, S. et al. Heterogeneous distribution of K-ras mutations in primary colon carcinomas: implications for EGFR-directed therapy. Int. J. Colorectal Dis. 26, 1271–1277 (2011).

    Article  PubMed  Google Scholar 

  30. Gonzalez de Castro, D. et al. A comparison of three methods for detecting KRAS mutations in formalin-fixed colorectal cancer specimens. Br. J. Cancer 107, 345–351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solassol, J. et al. KRAS mutation detection in paired frozen and formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Int. J. Mol. Sci. 12, 3191–3204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lièvre, A. et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26, 374–379 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Diaz, L.A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diehl, F. et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135, 489–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Leary, R.J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Board, R.E. et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res. Treat. 120, 461–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. West, N.P. et al. The proportion of tumour cells is an independent predictor for survival in colorectal cancer patients. Br. J. Cancer 102, 1519–1523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soh, J. et al. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE 4, e7464 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. El Messaoudi, S., Rolet, F., Mouliere, F. & Thierry, A.R. Circulating cell free DNA: Preanalytical considerations. Clin. Chim. Acta 424, 222–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Bustin, S.A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. McShane, L.M. et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat. Clin. Pract. Oncol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Robert, J. Dubois, A. Lievre, C. Theillet, S. Du Manoir, C. Sardet, D. Tousch and R. Gimbaud for helpful discussions. We would like to thank L. Kamraoui, A. Laybats, J.-Y. Cance and M. Cavalier for excellent technical assistance. F. Mouliere is supported by a grant from CNRS and the Region of Languedoc-Roussillon (CNRS044406). The study was funded by grants from the Fondation ARC pour la Recherche sur le Cancer and the Association GEFLUC (DCMLP10-184, France). We thank Bio-Rad for the qPCR thermocycler free loan. A.R.T. is supported by INSERM.

Author information

Authors and Affiliations

Authors

Contributions

A.R.T. obtained funding, designed the study, interpreted experiments and wrote the manuscript. M.M., D.P., F.B., E.L.-C., M.D.R., P.-J.L., F. Mouliere and M.Y. designed the study. F. Mouliere, S.E.M. and F.R. performed experiments and analyzed the data. F. Mouliere, S.E.M. and A.R.T. prepared the manuscript. C.G., B.R., S.E.M., E.L.-C., M.D.R., M.M., D.P. and M.Y. critically revised the manuscript. C.G., B.R. and F. Molina gave conceptual advice and assisted in the design of experiments. C.M. designed the study, acquired all of the clinical data and performed the statistical analysis. E.L.-C., B.G., P.D., M.N., V.L. and A.-S.J. collected blood samples and acquired the clinical data. F. Mouliere, S.E.M. and A.R.T. developed the Intplex assay. C.G., B.R., F. Mouliere, F. Molina, S.E.M., E.L.-C., M.D.R., M.M., D.P., F.B., P.-J.L., C.M. and M.Y. interpreted the experiments. All authors approved the content of the manuscript.

Corresponding author

Correspondence to Alain R Thierry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–4 and Supplementary Methods (PDF 1516 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thierry, A., Mouliere, F., El Messaoudi, S. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20, 430–435 (2014). https://doi.org/10.1038/nm.3511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3511

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing