Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids

Subjects

Abstract

Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mfge8 mediates fatty acid uptake.
Figure 2: Mfge8 mediates absorption of dietary fats.
Figure 3: Mfge8 mediates fatty acid clearance from serum and deposition in peripheral organs.
Figure 4: Mfge8 increases fatty acid uptake through PI3K.
Figure 5: Mfge8 induces cell surface translocation of Cd36 and Fatp1.
Figure 6: Mfge8−/− mice are protected from DIO.

Similar content being viewed by others

References

  1. Berk, P.D. et al. Selective up-regulation of fatty acid uptake by adipocytes characterizes both genetic and diet-induced obesity in rodents. J. Biol. Chem. 274, 28626–28631 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Berk, P.D. et al. Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J. Biol. Chem. 272, 8830–8835 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Stump, D.D., Fan, X. & Berk, P.D. Oleic acid uptake and binding by rat adipocytes define dual pathways for cellular fatty acid uptake. J. Lipid Res. 42, 509–520 (2001).

    CAS  PubMed  Google Scholar 

  4. Anderson, C.M. & Stahl, A. SLC27 fatty acid transport proteins. Mol. Aspects Med. 34, 516–528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stahl, A., Evans, J.G., Pattel, S., Hirsch, D. & Lodish, H.F. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev. Cell 2, 477–488 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Luiken, J.J. et al. Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. Am. J. Physiol. Endocrinol. Metab. 282, E491–E495 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Luiken, J.J. et al. Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52, 1627–1634 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Atabai, K. et al. Mfge8 is critical for mammary gland remodeling during involution. Mol. Biol. Cell 16, 5528–5537 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Greenberg, M.E. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nandrot, E.F. et al. Essential role for MFG-E8 as ligand for αvβ5 integrin in diurnal retinal phagocytosis. Proc. Natl. Acad. Sci. USA 104, 12005–12010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryeom, S.W., Sparrow, J.R. & Silverstein, R.L. CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J. Cell Sci. 109, 387–395 (1996).

    CAS  PubMed  Google Scholar 

  13. Tandon, N.N., Kralisz, U. & Jamieson, G.A. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J. Biol. Chem. 264, 7576–7583 (1989).

    CAS  PubMed  Google Scholar 

  14. Atabai, K. et al. Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J. Clin. Invest. 119, 3713–3722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kudo, M. et al. Mfge8 suppresses airway hyperresponsiveness in asthma by regulating smooth muscle contraction. Proc. Natl. Acad. Sci. USA 110, 660–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Silvestre, J.S. et al. Lactadherin promotes VEGF-dependent neovascularization. Nat. Med. 11, 499–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Aziz, M.M. et al. MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent αvβ3 integrin signaling. J. Immunol. 182, 7222–7232 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Twito, T., Madeleine, D., Perl-Treves, R., Hillel, J. & Lavi, U. Comparative genome analysis with the human genome reveals chicken genes associated with fatness and body weight. Anim. Genet. 42, 642–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Rankinen, T. et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14, 529–644 (2006).

    Article  Google Scholar 

  20. Henegar, C. et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9, R14 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Aoki, N. et al. Identification and characterization of microvesicles secreted by 3T3–L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 148, 3850–3862 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Yu, F. et al. Proteomic analysis of aorta and protective effects of grape seed procyanidin b2 in db/db mice reveal a critical role of milk fat globule epidermal growth factor-8 in diabetic arterial damage. PLoS ONE 7, e52541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng, M. et al. Correlation between serum lactadherin and pulse wave velocity and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 95, 125–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Liao, J., Sportsman, R., Harris, J. & Stahl, A. Real-time quantification of fatty acid uptake using a novel fluorescence assay. J. Lipid Res. 46, 597–602 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Pohl, J., Ring, A., Korkmaz, U., Ehehalt, R. & Stremmel, W. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol. Biol. Cell 16, 24–31 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Samovski, D., Su, X., Xu, Y., Abumrad, N.A. & Stahl, P.D. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J. Lipid Res. 53, 709–717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonen, A., Luiken, J.J., Arumugam, Y., Glatz, J.F. & Tandon, N.N. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J. Biol. Chem. 275, 14501–14508 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Jain, S.S. et al. Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6. FEBS Lett. 583, 2294–2300 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Glatz, J.F., Luiken, J.J. & Bonen, A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 90, 367–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Chabowski, A. et al. Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am. J. Physiol. Endocrinol. Metab. 287, E781–E789 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Newburg, D.S. et al. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet 351, 1160–1164 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Coburn, C.T. et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275, 32523–32529 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, Q. et al. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol. Cell. Biol. 26, 3455–3467 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanaka, T. et al. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J. Lipid Res. 42, 751–759 (2001).

    CAS  PubMed  Google Scholar 

  35. Bamba, V. & Rader, D.J. Obesity and atherogenic dyslipidemia. Gastroenterology 132, 2181–2190 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Drover, V.A. et al. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J. Biol. Chem. 283, 13108–13115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Drover, V.A. et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J. Clin. Invest. 115, 1290–1297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nassir, F., Wilson, B., Han, X., Gross, R.W. & Abumrad, N.A. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J. Biol. Chem. 282, 19493–19501 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Moodley, Y. et al. Macrophage recognition and phagocytosis of apoptotic fibroblasts is critically dependent on fibroblast-derived thrombospondin 1 and CD36. Am. J. Pathol. 162, 771–779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, J., DeYoung, S.M., Zhang, M., Cheng, A. & Saltiel, A.R. Changes in integrin expression during adipocyte differentiation. Cell Metab. 2, 165–177 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. Mizejewski, G.J. Role of integrins in cancer: survey of expression patterns. Proc. Soc. Exp. Biol. Med. 222, 124–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, Y. et al. Tumor αvβ3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res. 67, 5821–5830 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y., Zuckier, L.S. & Ghesani, N.V. Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res. 30, 369–374 (2010).

    PubMed  Google Scholar 

  44. Zheng, D.Q., Woodard, A.S., Fornaro, M., Tallini, G. & Languino, L.R. Prostatic carcinoma cell migration via αvβ3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res. 59, 1655–1664 (1999).

    CAS  PubMed  Google Scholar 

  45. Asano, K. et al. Masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice. J. Exp. Med. 200, 459–467 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poehlman, E.T., Scheffers, J., Gottlieb, S.S., Fisher, M.L. & Vaitekevicius, P. Increased resting metabolic rate in patients with congestive heart failure. Ann. Intern. Med. 121, 860–862 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Bonetto, A. et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS ONE 6, e22538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rolland, Y., Abellan van Kan, G., Gillette-Guyonnet, S. & Vellas, B. Cachexia versus sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 14, 15–21 (2011).

    Article  PubMed  Google Scholar 

  49. Strissel, K.J. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, X., Griffiths, M., Wu, J., Farese, R.V. Jr. & Sheppard, D. Normal development, wound healing, and adenovirus susceptibility in β5-deficient mice. Mol. Cell. Biol. 20, 755–759 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Su, G. et al. Absence of integrin αvβ3 enhances vascular leak in mice by inhibiting endothelial cortical actin formation. Am. J. Respir. Crit. Care Med. 185, 58–66 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takahashi, K. et al. A murine very late activation antigen-like extracellular matrix receptor involved in CD2- and lymphocyte function-associated antigen-1–independent killer-target cell interaction. J. Immunol. 145, 4371–4379 (1990).

    CAS  PubMed  Google Scholar 

  53. Ashkar, S. et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Su, G. et al. Integrin αvβ5 regulates lung vascular permeability and pulmonary endothelial barrier function. Am. J. Respir. Cell Mol. Biol. 36, 377–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Zovein, A.C. et al. β1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev. Cell 18, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Helming, L., Winter, J. & Gordon, S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J. Cell Sci. 122, 453–459 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomas, G.J., Hart, I.R., Speight, P.M. & Marshall, J.F. Binding of TGF-β1 latency-associated peptide (LAP) to αvβ6 integrin modulates behaviour of squamous carcinoma cells. Br. J. Cancer 87, 859–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tseng, Y.H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, P. et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475, 386–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Anwar, K., Iqbal, J. & Hussain, M.M. Mechanisms involved in vitamin E transport by primary enterocytes and in vivo absorption. J. Lipid Res. 48, 2028–2038 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Smyth, J.W. et al. Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane. Circ. Res. 110, 978–989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet–induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Uchida, A. et al. Reduced triglyceride secretion in response to an acute dietary fat challenge in obese compared to lean mice. Front. Physiol. 3, 26 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim, K.Y. et al. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J. Clin. Invest. 121, 3701–3712 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sutton, G.M. et al. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors. Endocrinology 147, 2183–2196 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Ueyama, A., Sato, T., Yoshida, H., Magata, K. & Koga, N. Nonradioisotope assay of glucose uptake activity in rat skeletal muscle using enzymatic measurement of 2-deoxyglucose 6-phosphate in vitro and in vivo. Biol. Signals Recept. 9, 267–274 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grant P30 DK 063-7202 and the University of California, San Francisco (UCSF) Diabetes and Endocrinology Research Center and UCSF Cardiovascular Research Institute startup funds (K.A.). We would like to thank K. Nguyen for help with flow cytometry studies, A. Atakilit and D. Sheppard (UCSF Lung Biology Center) for providing integrin-blocking antibodies, R. Silverstein for providing Cd36−/− mice (Cleveland Clinic Research Institute) and K. Ashrafi for thoughtful review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.K.-S. and W.M. designed and performed in vivo and in vitro experiments and aided in writing the manuscript. S.S. carried out in vivo experiments with obese mice, isolated recombinant protein constructs and performed flow cytometry. Y.Y.C. carried out in vivo insulin sensitivity studies. K.T. aided with isolation of primary and pre-adipocytes and measured fecal energy content. Y.Q. aided with metabolic cage studies. S.M.T., A.S. and A.C. aided in the design of experiments and interpretation of results. K.A. designed the study, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Kamran Atabai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 26356 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalifeh-Soltani, A., McKleroy, W., Sakuma, S. et al. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids. Nat Med 20, 175–183 (2014). https://doi.org/10.1038/nm.3450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing