Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity

Abstract

Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Obesity induces MAM formation and changes in ER and mitochondrial morphology in the liver.
Figure 2: ER structural and functional changes in response to acute stress.
Figure 3: Regulation of MAM enriched proteins in obesity.
Figure 4: Obesity alters mitochondrial Ca2+ flux liver.
Figure 5: Experimental induction of ER-mitochondria interactions increases mitochondrial Ca2+ flux and impairs glucose homeostasis.
Figure 6: Experimental suppression of MAM function or formation alters mitochondrial Ca2+ flux and improves glucose homeostasis.

Similar content being viewed by others

References

  1. Flegal, K.M., Carroll, M.D., Ogden, C.L. & Curtin, L.R. Prevalence and trends in obesity among US adults, 1999–2008. J. Am. Med. Assoc. 303, 235–241 (2010).

    CAS  Google Scholar 

  2. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  3. Hotamisligil, G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lowell, B.B. & Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387 (2005).

    CAS  PubMed  Google Scholar 

  5. Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Otoda, T. et al. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes 62, 811–824 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    CAS  PubMed  Google Scholar 

  8. Ozcan, L. & Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63, 317–328 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boden, G. et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57, 2438–2444 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gregor, M.F. et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58, 693–700 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  12. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao, C., Giacca, A. & Lewis, G.F. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 60, 918–924 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, D. et al. Mitochondrial dysfunction due to long-chain acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc. Natl. Acad. Sci. USA 104, 17075–17080 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelley, D.E., He, J., Menshikova, E.V. & Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    CAS  PubMed  Google Scholar 

  16. Kim, J.A., Wei, Y. & Sowers, J.R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Petersen, K.F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vianna, C.R. et al. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 4, 453–464 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng, Z. et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat. Med. 15, 1307–1311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Patti, M.E. & Corvera, S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev. 31, 364–395 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mantena, S.K., King, A.L., Andringa, K.K., Eccleston, H.B. & Bailey, S.M. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic. Biol. Med. 44, 1259–1272 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bugianesi, E. et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48, 634–642 (2005).

    CAS  PubMed  Google Scholar 

  23. Vial, G. et al. Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J. Hepatol. 54, 348–356 (2011).

    CAS  PubMed  Google Scholar 

  24. Begriche, K., Massart, J., Robin, M.A., Bonnet, F. & Fromenty, B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58, 1497–1507 (2013).

    CAS  PubMed  Google Scholar 

  25. Rowland, A.A. & Voeltz, G.K. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    CAS  PubMed  Google Scholar 

  27. Friedman, J.R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schuck, S., Prinz, W.A., Thorn, K.S., Voss, C. & Walter, P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187, 525–536 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bravo, R. et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143–2152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pinton, P., Giorgi, C., Siviero, R., Zecchini, E. & Rizzuto, R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27, 6407–6418 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. de Brito, O.M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    PubMed  Google Scholar 

  32. Simmen, T. et al. PACS-2 controls endoplasmic reticulum–mitochondria communication and Bid-mediated apoptosis. EMBO J. 24, 717–729 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayashi, T. & Su, T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131, 596–610 (2007).

    CAS  PubMed  Google Scholar 

  34. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rizzuto, R. et al. Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta 1787, 1342–1351 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Palmer, A.E. & Tsien, R.Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1, 1057–1065 (2006).

    CAS  PubMed  Google Scholar 

  37. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).

    CAS  PubMed  Google Scholar 

  38. Csordás, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).

    PubMed  PubMed Central  Google Scholar 

  39. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baughman, J.M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lynes, E.M. & Simmen, T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. Biochim. Biophys. Acta 1813, 1893–1905 (2011).

    CAS  PubMed  Google Scholar 

  42. Jheng, H.F. et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell. Biol. 32, 309–319 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bonnard, C. et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Invest. 118, 789–800 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cárdenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Sebastián, D. et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. USA 109, 5523–5528 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013).

    CAS  PubMed  Google Scholar 

  47. Ozcan, L. et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 15, 739–751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y. et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128–132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279–3294 (2014).

    CAS  PubMed  Google Scholar 

  50. Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500–511 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weil, C. et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat. Commun. 5, 3792 (2014).

    Google Scholar 

  53. Bomfim, T.R. et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease- associated Aβ oligomers. J. Clin. Invest. 122, 1339–1353 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wieckowski, M.R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590 (2009).

    CAS  PubMed  Google Scholar 

  55. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    CAS  PubMed  Google Scholar 

  56. Csordás, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell. 39, 121–132 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Furuhashi, M. et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid–binding protein aP2. Nature 447, 959–965 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rossetti, L. et al. Peripheral but not hepatic insulin resistance in mice with one disrupted allele of the glucose transporter type 4 (GLUT4) gene. J. Clin. Invest. 100, 1831–1839 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to D. Clapham and N. Blair for their help in the Ca2+ imaging experiments and generously allowing the use of their laboratory facilities. We would like to thank M. Ericson, L. Trakimas and E. Benecchi for their assistance in electron microscopy and M. Strauss and L. Cameron for helping with the serial-section EM reconstruction and confocal microscopy, respectively. IP3R1 antibody was a gift from R. Wojcikiewicz. The Ca2+ FRET reporter was a gift from R. Tsien (University of California, San Diego). Linker plasmid was a gift from G. Hajnóczky (Thomas Jefferson University). PACS-2–specific antibody was a gift from G. Thomas (University of Pittsburgh). We thank A. Gimenez-Cassina for helping with some of the Seahorse experiments. We thank the anonymous reviewer of the manuscript for suggesting the experiments with PACS-2. We also want to thank L. Yang, S. Fu and E. Calay for their technical assistance. We extend a special thanks to K. Claiborn for critical reading and editing of the manuscript. This work was supported in part by the US National Institutes of Health (DK52539 and 1RC4-DK090942). A.P.A. is supported by PEW Charitable Trusts. B.M.P. is supported by Alfred Benzon Foundation (Denmark).

Author information

Authors and Affiliations

Authors

Contributions

A.P.A. and B.M.P. designed the project, performed experiments, analyzed and interpreted the results, and wrote the manuscript; G.P. and E.G. performed image quantification and in vitro experiments. K.I. performed animal experiments; G.S.H. designed the project, analyzed and interpreted the data, and wrote the manuscript.

Corresponding author

Correspondence to Gökhan S Hotamisligil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 21445 kb)

Serial-section EMs of liver showing ER and mitochondrial morphology in a lean mouse.

Serial sections were 60 nm apart. (MOV 22290 kb)

3D reconstruction of serial-section EM of liver from a lean mouse.

The images in the stack were aligned by the auto alignment tool of the IMOD Etomo software and interpolated in ImageJ. 3D segmentation was generated using IMOD 3dMOD software. (MOV 32289 kb)

Serial section EMs of liver showing ER and mitochondrial morphology in an ob/ob mouse.

Serial sections were 60 nm apart. (MOV 21134 kb)

3D reconstruction of serial-section EM of liver from an ob/ob mouse.

The images in the stack were aligned by the auto alignment tool of the IMOD Etomo software and interpolated in ImageJ. 3D segmentation was generated using IMOD 3dMOD software. (MOV 18044 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arruda, A., Pers, B., Parlakgül, G. et al. Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med 20, 1427–1435 (2014). https://doi.org/10.1038/nm.3735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing