Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells

Abstract

Hematopoietic cells are important targets for genetic modification with retroviral vectors. Attempts at human gene therapy of stem cells have achieved limited success partly because of low gene transfer efficiency. Chymotryptic fragments of the extracellular matrix molecule fibronectin used during infection have been shown to increase transduction of human hematopoietic progenitor cells. Here, we demonstrate that this enhanced gene transfer into mammalian target cells is due to direct binding of retroviral particles to sequences within the fibronectin molecule. Transduction of mammalian cells, including murine long–term repopulating hematopoietic cells, is greatly enhanced when cells are adherent to chimeric fragments containing these retroviral binding sequences. In addition, colocalization of retrovirus and target cells on fibronectin peptides allows targeted transduction of specific cell types by exploiting unique ligand/receptor interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morrison, S.J., Uchida, N. & Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Mulligan, R.C. The basic science of gene therapy. Science 260, 926–932 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Williams, D.A., Lemischka, I.R., Nathan, D.G. & Mulligan, R.C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310, 476–480 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Dick, J.E., Magli, M.C., Huszar, D., Phillips, R.A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Keller, G., Paige, C., Gilboa, E. & Wagner, E.F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent hematopoietic precursors. Nature 318, 149–154 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Lemischka, I.R., Raulet, D.H. & Mulligan, R.C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Bordignon, C. et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270, 470–475 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Brenner, M.K. et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342, 1134–1137 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Deisseroth, A.B. et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83, 3068–3076 (1994).

    CAS  PubMed  Google Scholar 

  10. Dunbar, C.E. et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85, 3048–3057 (1995).

    CAS  PubMed  Google Scholar 

  11. Blaese, R.M. et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 270, 475–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Kohn, D.B. et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Med. 1, 1017–1023 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Bodine, D.M., McDonagh, K.T., Seidel, N.E. & Nienhuis, A.W. Survival and retrovirus infection of murine hematopoietic stem cells in vitro: Effects of 5-FU and method of infection. Exp. Hematol. 19, 206–212 (1991).

    CAS  PubMed  Google Scholar 

  14. Yoder, M.C. & Williams, D.A. Matrix molecule interactions with hematopoietic stem cells. Exp. Hematol. 23, 961–967 (1995).

    CAS  PubMed  Google Scholar 

  15. Williams, D.A., Rios, M., Stephens, C. & Patel, V.P. Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions. Nature 352, 438–441 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. verfaillie, C.M., McCarthy, J.B. & McGlave, P.B. Differentiation of primitive human multipotent hematopoietic progenitors into single lineage clonogenic progenitors is accompanied by alterations in their interaction with fibronectin. J. Exp. Med. 174, 693–703 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Verfaillie, C.M., Benis, A., lida, J., McGlave, P.B. & McCarthy, J.B. Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: Cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion receptor. Blood 84, 1802–1811 (1994).

    CAS  PubMed  Google Scholar 

  18. Ruoslahti, E. Fibronectin and its receptors. Annu. Rev. Biochem. 57, 375–413 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Moritz, T., Patel, V.P. & Williams, D.A. Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J. Clin. Invest. 93, 1451–1457 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimizuka, F. et al. Production and characterization of functional domains of human fibronectin expressed in Escherichia coli. J. Biochem. 110, 284–291 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Clapp, D.W. et al. Myeloproliferative sarcoma virus directed expression of beta-galactosidase following retroviral transduction of murine hematopoietic cells. Exp. Hematol. 23, 630–638 (1995).

    CAS  PubMed  Google Scholar 

  23. Bradley, T.R. & Hodgson, G.S. Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood 54, 1446–1450 (1979).

    CAS  PubMed  Google Scholar 

  24. Williams, D.A., Orkin, S.H. & Mulligan, R.C. Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine hematopoietic cells in vivo. Proc. Natl. Acad. Sci. USA 83, 2566–2570 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moritz, T., Keller, D.C. & Williams, D.A. Human cord blood cells as targets for gene transfer: Potential use in genetic therapies of severe combined immunodeficiency disease. J. Exp. Med. 178, 529–536 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Dalton, S.L., Marcantonio, E.E. & Assoian, R.K. Cell attachment controls fibronectin and alpha 5 beta 1 integrin levels in fibroblasts. Implications for anchorage-dependent and -independent growth. J. Biol Chem. 267, 8186–8191 (1992).

    CAS  PubMed  Google Scholar 

  27. Patel, V.P. & Lodish, H.F. The fibronectin receptor on mammalian erythroid precursor cells: Characterization and developmental regulation. J. Cell Biol. 102, 449–456 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Tsai, S. et al. Differential binding of erythroid and myeloid progenitors to fibroblasts and fibronectin. Blood 69, 1587–1594 (1987).

    CAS  PubMed  Google Scholar 

  29. Orkin, S.H. & Motulsky, A.G. Report and recommendations of the panel to assess the NIH investment in research on gene therapy. December 7, 1995. www.nih.gov/news/panelrep.html (1995).

  30. Moritz, T. et al. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: Evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood, in press (1996).

  31. Rider, C.C. et al. Anti-HIV-1 activity of chemically modified heparins: Correlation between binding to the V3 loop of gp120 and inhibition of cellular HIV-1 infection in vitro. Biochemistry 33, 6974–6980 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Dhawan, S. et al. Increased expression of alpha 4 beta 1 and alpha 5 beta 1 integrins on HTLV-I-infected lymphocytes. Virology 197, 778–781 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Bork, P. & Doolittle, R.F. Fibronectin type III modules in the receptor phos-phatase CD45 and tapeworm antigens. Protein Sci. 2, 1185–1187 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peles, E. et al. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 82, 251–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: Separating viral genes on two different plasmids. J. Virol. 62, 1120–1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lim, B., Williams, D.A. & Orkin, S.H. Retrovirus-mediated gene transfer of human adenosine deaminase: Expression of functional enzyme in murine hematopoietic stem cells in vivo. Mol. Cell. Biol. 1, 3459–3465 (1987).

    Article  Google Scholar 

  37. Markowitz, D., Goff, S. & Bank, A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, D. et al. Expression and structure of the human NGF receptor. Cell 47, 545–554 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Miller, A.D. Retrovirus packaging cells. Hum. Gene Ther. 1, 5–14 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanenberg, H., Xiao, X., Dilloo, D. et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 2, 876–882 (1996). https://doi.org/10.1038/nm0896-876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0896-876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing