Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease

Abstract

A nonhuman primate model of tuberculosis that closely resembles human disease is urgently needed. We have evaluated the Philippine cynomolgus monkey, Macaca fasicularis, as a model of TB. Cynomolgus monkeys challenged intratracheally with extremely high doses of Mycobacterium tuberculosis (105 or 104 CFU) developed an acute, rapidly progressive, highly fatal multilobar pneumonia. However, monkeys challenged with moderate or low doses of M. tuberculosis (≤103 CFU) developed a chronic, slowly progressive, localized form of pulmonary TB, akin to the disease in humans, that was frequently accompanied by such clinical syndromes as ocular tuberculosis, meningitis and tuberculous spondylitis. A significant proportion of monkeys challenged with 102 or 101 CFU contained the infection in a subclinical state. The Philippine cynomolgus monkey model is an excellent model of chronic TB and provides an opportunity to study subclinical and potentially latent disease in an animal model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Good, R.C. Diseases in nonhuman primates, in. The Mycobacteria: A Sourcebook. (eds. Kubica, G.P. & Wayne, L.G.) 903—921 (Dekker, New York, 1984).

    Google Scholar 

  2. Schmidt, L.H. The problem of the rapid inactivator of isoniazid. Bull. Int. Union Tuberc. 32, 487–495 (1962).

    Google Scholar 

  3. Good, R.C. Simian tuberculosis: Immunologic aspects. Ann. NYAcad. Sci. 154, 200 (1968).

    Article  CAS  Google Scholar 

  4. Schmidt, L.H. Improving existing methods of control of tuberculosis — A prime challenge to the experimentalist. The John Barnwell Lecture. Am. Rev. Respir. Dis. 105, 183–205 (1972).

    CAS  PubMed  Google Scholar 

  5. Corcoran, K.D. & Jaax, G.P. An attempt to predict anergy in tuberculosis suspect cynomolgus monkeys. Lab. Anim. Sci. 41, 57–62 (1991).

    CAS  PubMed  Google Scholar 

  6. Ward, G.S., Elwell, M.R., Tingpalapong, M. & Pomsdhit, J. Use of streptomycin and isoniazid during a tuberculosis epizootic in a rhesus and cynomolgus breeding colony. Lab. Anim. Sci. 35, 395–399 (1985).

    CAS  PubMed  Google Scholar 

  7. Good, R.C. Tuberculosis and bacterial infection. in Nonhuman Primates and Medical Research, (ed. Bourne, G.H.). 39–60 (Academic Press, New York, 1978).

    Google Scholar 

  8. Tribe, G.W. & Welburn, A.E. Value of combining the erythrocyte sedimentation rate test with tuberculin testing in the control of tuberculosis in baboons. Lab. Anim. 10, 39–46 (1976).

    Article  CAS  Google Scholar 

  9. Chaparas, S.D., Hodrick, S.R., Clark, R.G. & Garman, R. Comparison of the lymphocyte transformation test with the tuberculin test in rhesus monkeys and chimpanzees. Am. J. Vet. Res. 31, 1437–1441 (1970).

    CAS  PubMed  Google Scholar 

  10. Chaparas, S.D., Good, R.C. & Janicki, B.W. Tuberculin-induced lymphocyte transformation and skin reactivity in monkeys vaccinated or not vaccinated with bacille Calmette-Guérin, then challenged with virulent Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 112, 43–47 (1975).

    CAS  PubMed  Google Scholar 

  11. Muscoplat, C.C. et al. Comparison of lymphocyte stimulation and tuberculin skin reactivity in Mycobacterium bovfs-infected Macaca mulatta. Am. J. Vet. Res. 36, 699–701 (1975).

    CAS  PubMed  Google Scholar 

  12. Donahue, H.C. Ophthalmic experience in a tuberculosis sanitarium. Am. J. Ophthalmol. 64, 742–748 (1967).

    Article  CAS  Google Scholar 

  13. Barrett-Connor, E. Tuberculous meningitis in adults. South. Med. J. 60, 1061–1067 (1967).

    Article  CAS  Google Scholar 

  14. Farer, L.S., Lowell, L.M. & Meador, M.P. Extrapulmonary tuberculosis in the United States. Am. J. Epidemiol. 109, 205–217 (1979).

    Article  CAS  Google Scholar 

  15. Auerbach, O. Tuberculous meningitis: Correlation of therapeutic results with the pathogenesis and pathologic changes: Pathologic changes in untreated and treated cases. Am. Rev. Tuberc. 64, 419–429 (1951).

    CAS  PubMed  Google Scholar 

  16. Wurtz, R.B., Quadar, Z., Simon, D. & Langer, B. Cervical tuberculous vertebral osteomyelitis: Case report and discussion of the literature. Clin. Infect. Dis. 16, 806–808 (1993).

    Article  CAS  Google Scholar 

  17. Schmidt, L.H. Some observations on the utility of simian tuberculosis in defining the therapeutic potential of isoniazid. Am. Rev. Tuberc. 74, 138–146 (1956).

    CAS  PubMed  Google Scholar 

  18. Pal, P.G. & Horwitz, M.A. Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis. Infect. Immun. 60, 4781–4792 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Horwitz, M.A., Lee, B.W.E., Dillon, B.J. & Harth, G. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 92, 1530–1534 (1995).

    Article  CAS  Google Scholar 

  20. Boyum, A. Separation of white blood cells. Nature 204, 793 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, G., Tan, E., Dela Cruz, E. et al. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 2, 430–436 (1996). https://doi.org/10.1038/nm0496-430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0496-430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing