Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A model of measles virus–induced immunosuppression: Enhanced susceptibility of neonatal human PBLs

Abstract

Measles virus (MV) still incites one of the most contagious infections of humankind. Despite the development and use of an excellent live attenuated virus vaccine, over one million infants and children continue to die each year from measles1–3. The main cause of morbidity and mortality is virus–induced immunosuppression of lymphocyte function, which allows secondary infections. Here we report an in vivo model for the study of MV–induced immunosuppression. Human peripheral blood leukocytes (PBLs) grafted onto mice with severe combined immunodeficiency disease (SCID mice) to create hu–PBLS–SCID mice produce human IgG that is suppressed by MV infection, immunosuppression is dependent on the involvement of live virus and is dramatically more severe for PBLs obtained from newborns than PBLs from adults. Suppression of IgG synthesis by PBLs from newborns occurs as early as ten days after administration of MV to hu–PBLS–SCID mice compared with 44 days required for PBLs from adults. Further, MV infection of SCID mice reconstituted with PBLs from newborns reduces IgG production 26 ± 5–fold (mean ± 1 s.e.m.) as compared with only a 6 ± 0.5–fold reduction in adults. MV RNA could be detected in live human PBLs recovered from SCID mice as long as 110 days after MV infection began. The profound immunosuppression we observe in PBLs from infants probably contributes to the morbidity and mortality observed in infants vaccinated with measles virus. Further, this model should be useful for accessing the potential immunosuppressive abilities of newly isolated field (wild–type) virus isolates and newly designed vaccines containing attenuated MV or subunit vaccines, as well as in dissecting the role played by maternal antibodies to MV on the ability of the virus to enhance or abort the virus–induced immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Griffin, D.E. .& Bellini, W.J. Measles virus. in Virology (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 1267–1312 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  2. Markowitz, L. Katz, S. Measles vaccine. in Vaccines (eds. Plotkin, S. & Mortimer, S.) 229–276 (Saunders, Philadelphia, 1994).

    Google Scholar 

  3. Black, F.L. Measles active and passive immunity in a worldwide perspective. Prog. Med. Virol. 36, 1–33 (1989).

    CAS  PubMed  Google Scholar 

  4. Hendrickson, E.A. The SCID mouse: Relevance as an animal model system for studying human disease. Am. J. Pathol. 143, 1511–1522 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bosma, G.C., Custer, R.P. & Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature 301, 527–530 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Mosier, D., Gulizia, R., Baird, S. & Wilson, D. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335, 256–9 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Duchosal, M.A., Eming, S.A., McConahey, P.J. & Dixon, F.J. The hu-PBLS-SCID mouse model: Long-term human serologic evolution associated with the xenogeneic transfer of human peripheral blood leukocytes into SCID mice. Cell. Immunol. 139, 468–477 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Mosier, D.E. et al. Human immunodeficiency virus infection of human-PBLS-SC1D mice. Science 251, 791–794 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Mosier, D., Gulizia, R., Maclsaac, P., Torbett, B. & Levy, J. Rapid loss of CD4+ T cells in human-PBLS-SCID mice by noncytopathic HIV isolates. Science 260, 689–692 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Mosier, D.E., Gulizia, R.J., Maclsaac, P.O., Corey, L. & Greenberg, P.O. Resistance to human immunodeficiency virus 1 infection of SCID mice reconstituted with peripheral blood leukocytes from donors vaccinated with vaccinia gp160 and recombinant gp160. Proc. Natl Acad. Sd. USA 90, 2443–7 (1993).

    Article  CAS  Google Scholar 

  11. Tyor, W., Power, C., Gendelman, H. & Markham, R. A model of human immunodeficiency virus encephalitis in scid mice. Proc. Natl. Acad. Sci. USA 90, 8658–8662 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cannon, M.P., Pisa, P., Fox, R. & Cooper, N. Epstein-Barr virus induces aggressive lymphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J. Clin din. Invest. 85, 1333–1337 (1990).

    Article  CAS  Google Scholar 

  13. Mocarski, E., Bonyhadi, M., Salimi, S., McCune, J.M. & Kaneshima, H. Human cytomegalovirus in a SCID-hu mouse: Thymic epithelial cells are prominent targets of viral replication. Proc. Natl. Acad. Sci. USA 90, 104–108 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorig, R., Marcel, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Manchester, M., Liszewski, M.K., Atkinson, J.P. & Oldstone, M.B.A. Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc. Natl. Acad. Sci. USA 91, 2161–2165 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Slifka, M.K., Matloubian, M. & Ahmed, R. Bone marrow is a major site of long-term antibody production after acute viral infection. J. Virol. 69, 1895–902 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmed, R. & Gray, D. Immunologic memory and protective immunity: Understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Ueki, Y. et al Clonal analysis of a human antibody response. Quantification of precursors and antibody producing cells and generation and characterization of monoclonal IgM, IgG, and IgA to rabies virus. J. Exp. Med. 171, 19–34 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. McChesney, M.B. & Oldstone, M.B.A. Virus-induced immunosuppression: Infections with measles virus and human immunodeficiency virus. Adv. Immunol. 45, 335–380 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Yanagi, Y., Cubitt, B. & Oldstone, M.B.A. Measles virus inhibits mitogen-in-duced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187, 280–289 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. von Pirquet, C.E. Das Verhalten der kutanen Tuberkulin-reaktion wahrend der Masern. Deutsch Med. Wochenschr. 34, 1297–1300 (1908).

    Article  Google Scholar 

  23. McChesney, M.B., Fujinami, R.S., Lampert, P.W. & Oldstone, M.B.A. Viruses disrupt functions of human T lymphocytes. II. Measles virus suppresses antibody production by acting on B lymphocytes. J. Exp. Med. 163, 1331–1336 (1986).

    CAS  PubMed  Google Scholar 

  24. McChesney, M.B., Kehrl, J.H., Valsamakis, A., Fauci, A.S. & Oldstone, M.B.A. Measles virus infection of B lymphocytes permits cellular activation but blocks progression through the cell cycle. J. Virol. 61, 3441–3447 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McChesney, M.B., Altman, A. & Oldstone, M.B.A. Suppression of T lymphocyte function by measles virus is due to cell cycle arrest in G1. J. Immunol. 140, 1269–1273 (1988).

    CAS  PubMed  Google Scholar 

  26. Casali, P., Rice, G.P.A. & Oldstone, M.B.A. Viruses disrupt functions of human lymphocytes: Effects of measles virus and influenza virus on lymphocyte-mediated killing and antibody production. J. Exp. Med. 159, 1322–1337 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Fenner, F., McAuslan, B.R., Minis, C.A., Sambrook, J. & White, D. The Biology of Animal Viruses (Academic Press, New York, 1974).

    Google Scholar 

  28. McChesney, M.B., Fujinami, R.S., Lerche, N.W., Marx, P.A. & Oldstone, M.B.A. Virus induced immunosuppression: Infection of peripheral blood mononuclear cells and suppression of immunoglobulin synthesis during natural measles virus infection of rhesus monkeys. J. Infect. Dis. 159, 757–760 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Rebai, N. & Malissen, B. Structural and genetic analyses of HLA class 1 molecules using monoclonal xenoantibodies. Tissue Antigens 22, 107–117 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Meizlik, E.H. & Carpenter, A.M. Beneficial effect of measles on nephrosis: Report of 3 cases. Am. J. Dis. Child. 76, 83–90 (1948).

    Article  CAS  Google Scholar 

  31. Gellen, B. & Katz, S. Putting a stop to a serial killer: Measles. J. Infect. Dis. 170, S1–S3 (1994).

    Article  Google Scholar 

  32. Markowitz, L.E. Bernier, H. Immunization of younginfantswith Edmonston-Zagreb measles vaccine. Pediatr. Infect. Dis. J. 6, 809–812 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual edn. 2 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tishon, A., Manchester, M., Scheiflinger, F. et al. A model of measles virus–induced immunosuppression: Enhanced susceptibility of neonatal human PBLs. Nat Med 2, 1250–1254 (1996). https://doi.org/10.1038/nm1196-1250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing