Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes

Subjects

Abstract

Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta cell failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insulin resistance through activation of peripheral CB1 receptors (CB1Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB1R signaling in beta cells, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB1R-deficient (Cnr1−/−) or Nlrp3−/− mice, with the endocannabinoid anandamide. Peripheral CB1R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB1R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB1R as a therapeutic target in T2DM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of peripheral CB1R blockade on body weight, adiposity, hepatic lipogenesis and glycemic control in ZDF rats.
Figure 2: The effect of chronic JD5037 treatment on beta cell survival and function in ZDF rats.
Figure 3: Macrophage content and Nlrp3 expression in islets of lean and diabetic rats.
Figure 4: Effects of macrophage depletion on glycemic control and proinflammatory signaling in islets of ZDF rats.
Figure 5: Effects of macrophage-selective siRNA knockdown of CB1R in ZDF rats.
Figure 6: Proinflammatory gene and protein expression in human macrophages and rat and human isolated islets treated with AEA, IL-1β or high glucose.

Similar content being viewed by others

References

  1. Defronzo, R.A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773–795 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shoelson, S.E., Lee, J. & Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ehses, J.A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Masters, S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Youm, Y.H. et al. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology 152, 4039–4045 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goossens, G.H. et al. Expression of NLRP3 inflammasome and T cell population markers in adipose tissue are associated with insulin resistance and impaired glucose metabolism in humans. Mol. Immunol. 50, 142–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, H.M. et al. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62, 194–204 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Pacher, P., Batkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osei-Hyiaman, D. et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 115, 1298–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jourdan, T. et al. Antagonism of peripheral hepatic cannabinoid receptor-1 improves liver lipid metabolism in mice: evidence from cultured explants. Hepatology 55, 790–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Eckardt, K. et al. Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia 52, 664–674 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J. et al. Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. Gastroenterology 142, 1218–1228 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Matias, I. et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J. Clin. Endocrinol. Metab. 91, 3171–3180 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ravinet Trillou, C. et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R345–R353 (2003).

    Article  PubMed  Google Scholar 

  17. Jourdan, T. et al. CB1 antagonism exerts specific molecular effects on visceral and subcutaneous fat and reverses liver steatosis in diet-induced obese mice. Diabetes 59, 926–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Després, J.P., Golay, A. & Sjostrom, L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med. 353, 2121–2134 (2005).

    Article  PubMed  Google Scholar 

  19. Addy, C. et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab. 7, 68–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Rosenstock, J., Hollander, P., Chevalier, S. & Iranmanesh, A. SERENADE: the Study Evaluating Rimonabant Efficacy in Drug-naive Diabetic Patients: effects of monotherapy with rimonabant, the first selective CB1 receptor antagonist, on glycemic control, body weight, and lipid profile in drug-naive type 2 diabetes. Diabetes Care 31, 2169–2176 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Le Foll, B., Gorelick, D.A. & Goldberg, S.R. The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology (Berl.) 205, 171–174 (2009).

    Article  CAS  Google Scholar 

  22. Tam, J. et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J. Clin. Invest. 120, 2953–2966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tam, J. et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 16, 167–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Jetton, T.L. et al. Mechanisms of compensatory beta-cell growth in insulin-resistant rats: roles of Akt kinase. Diabetes 54, 2294–2304 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Topp, B.G., Atkinson, L.L. & Finegood, D.T. Dynamics of insulin sensitivity, -cell function, and -cell mass during the development of diabetes in fa/fa rats. Am. J. Physiol. Endocrinol. Metab. 293, E1730–E1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Rohrbach, K. et al. Ibipinabant attenuates beta-cell loss in male Zucker diabetic fatty rats independently of its effects on body weight. Diabetes Obes. Metab. 14, 555–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, W. et al. Cannabinoids induce pancreatic beta-cell death by directly inhibiting insulin receptor activation. Sci. Signal. 5, ra23 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Oslowski, C.M. et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 16, 265–273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lerner, A.G. et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, K.H. et al. CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc. Res. 84, 378–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Osundiji, M.A. et al. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes 61, 321–328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Calegari, V.C. et al. Inflammation of the hypothalamus leads to defective pancreatic islet function. J. Biol. Chem. 286, 12870–12880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Hare, J.D., Zielinski, E., Cheng, B., Scherer, T. & Buettner, C. Central endocannabinoid signaling regulates hepatic glucose production and systemic lipolysis. Diabetes 60, 1055–1062 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Wolf, A.M., Wolf, D., Rumpold, H., Enrich, B. & Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323, 630–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kharroubi, I., Rasschaert, J., Eizirik, D.L. & Cnop, M. Expression of adiponectin receptors in pancreatic beta cells. Biochem. Biophys. Res. Commun. 312, 1118–1122 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Baldwin, W. et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes 60, 1258–1269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. van Rooijen, N. & Hendrikx, E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol. Biol. 605, 189–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Aouadi, M. et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458, 1180–1184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tesz, G.J. et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem. J. 436, 351–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, W. et al. Cannabinoids inhibit insulin receptor signaling in pancreatic beta-cells. Diabetes 60, 1198–1209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 12, 593–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, G.S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, J. et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem. J. 346, 835–840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han, M.S. et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339, 218–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Starowicz, K.M. et al. Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with a high-fat diet. Obesity (Silver Spring) 16, 553–565 (2008).

    Article  CAS  Google Scholar 

  50. Di Marzo, V., De Petrocellis, L., Sepe, N. & Buono, A. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem. J. 316, 977–984 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varga, K., Wagner, J.A., Bridgen, D.T. & Kunos, G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 12, 1035–1044 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Vilches-Flores, A., Hauge-Evans, A.C., Jones, P.M. & Persaud, S.J. Chronic activation of cannabinoid receptors in vitro does not compromise mouse islet function. Clin. Sci. (Lond.) 127, 467–478 (2013).

    Article  CAS  Google Scholar 

  53. Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Mukhopadhyay, B. et al. Transcriptional regulation of cannabinoid receptor-1 expression in the liver by retinoic acid acting via retinoic acid receptor-γ. J. Biol. Chem. 285, 19002–19011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Geurts, L., Muccioli, G.G., Delzenne, N.M. & Cani, P.D. Chronic endocannabinoid system stimulation induces muscle macrophage and lipid accumulation in type 2 diabetic mice independently of metabolic endotoxaemia. PLoS ONE 8, e55963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grapov, D., Adams, S.H., Pedersen, T.L., Garvey, W.T. & Newman, J.W. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS ONE 7, e48852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mehran, A.E. et al. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab. 16, 723–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Tang, Y. et al. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice. PLoS ONE 7, e42134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maedler, K. et al. Glucose-induced beta cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Louvet, A. et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 54, 1217–1226 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, L., Liu, J., Harvey-White, J., Zimmer, A. & Kunos, G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc. Natl. Acad. Sci. USA 100, 1393–1398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chorvat, R.J., Berbaum, J., Seriacki, K. & McElroy, J.F. JD-5006 and JD-5037: peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities. Bioorg. Med. Chem. Lett. 22, 6173–6180 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    Article  CAS  PubMed  Google Scholar 

  64. Godlewski, G. et al. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem. Biol. 17, 1256–1266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mukhopadhyay, B. et al. Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver. Proc. Natl. Acad. Sci. USA 108, 6323–6328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buettner, C. et al. Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice. J. Clin. Invest. 115, 1306–1313 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ju, C. & Pohl, L.R. Immunohistochemical detection of protein adducts of 2,4-dinitrochlorobenzene in antigen presenting cells and lymphocytes after oral administration to mice: lack of a role of Kupffer cells in oral tolerance. Chem. Res. Toxicol. 14, 1209–1217 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Tesz, G.J. et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem. J. 436, 351–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Rosen, E.D. et al. Targeted elimination of peroxisome proliferator-activated receptor γ in β cells leads to abnormalities in islet mass without compromising glucose homeostasis. Mol. Cell Biol. 23, 7222–7229 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, J. et al. Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-κB independently of platelet-activating factor. J. Biol. Chem. 278, 45034–45039 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Varga, K., Wagner, J.A., Bridgen, D.T. & Kunos, G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 12, 1035–1044 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.F. McElroy and R.J. Chorvat (Jenrin Discovery) for providing the CB1R antagonist JD5037 and its inactive diastereomer, O. Gavrilova (NIDDK, US National Institutes of Health (NIH)) for advice on pancreatic islet isolation, J. Harvey-White for technical assistance, D. Feng for FACS analyses, R. Kechrid for assistance with the animal studies and P. Staker for collecting human blood specimens. This study was supported by intramural NIH funds. The work from M.P.C.'s laboratory was supported by grants from the NIH (DK085753 and AI046629).

Author information

Authors and Affiliations

Authors

Contributions

T.J. and G.K. designed and carried out experiments, analyzed results and wrote the manuscript. G.G. performed the surgery and the clamp experiments, R.C. conducted liquid chromatography–tandem mass spectrometry endocannabinoid measurements, A.B. did some of the immunohistochemistry and FACS analyses, G.S. did western blotting and PCR assays, J.L., J.T. and B.M. assisted with cell culture experiments, T.H. did the work on macrophage depletion, M.C.S. provided human blood samples, C.J. provided clodronate liposomes, T.J. and M.A. designed and tested the GeRPs, and M.A. and M.P.C. provided GeRPs. All authors had access to the manuscript and agreed with the final version.

Corresponding authors

Correspondence to Tony Jourdan or George Kunos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jourdan, T., Godlewski, G., Cinar, R. et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19, 1132–1140 (2013). https://doi.org/10.1038/nm.3265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing