Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I

Abstract

Oxidative damage from elevated production of reactive oxygen species (ROS) contributes to ischemia-reperfusion injury in myocardial infarction and stroke. The mechanism by which the increase in ROS occurs is not known, and it is unclear how this increase can be prevented. A wide variety of nitric oxide donors and S-nitrosating agents protect the ischemic myocardium from infarction, but the responsible mechanisms are unclear1,2,3,4,5,6. Here we used a mitochondria-selective S-nitrosating agent, MitoSNO, to determine how mitochondrial S-nitrosation at the reperfusion phase of myocardial infarction is cardioprotective in vivo in mice. We found that protection is due to the S-nitrosation of mitochondrial complex I, which is the entry point for electrons from NADH into the respiratory chain. Reversible S-nitrosation of complex I slows the reactivation of mitochondria during the crucial first minutes of the reperfusion of ischemic tissue, thereby decreasing ROS production, oxidative damage and tissue necrosis. Inhibition of complex I is afforded by the selective S-nitrosation of Cys39 on the ND3 subunit, which becomes susceptible to modification only after ischemia. Our results identify rapid complex I reactivation as a central pathological feature of ischemia-reperfusion injury and show that preventing this reactivation by modification of a cysteine switch is a robust cardioprotective mechanism and hence a rational therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S-nitrosation of mitochondrial proteins is required for S-nitrosation–mediated protection from cardiac ischemia-reperfusion injury.
Figure 2: Respiratory complex I ND3 Cys39 S-nitrosation is dependent on low complex I activity.
Figure 3: ND3 Cys39 S-nitrosation mediates inhibition of complex I activity and ROS production.
Figure 4: S-nitrosation of ND3 Cys39 underlies protection from ischemia-reperfusion injury by mitochondrial S-nitrosation in vivo and represents a general mechanism for cardioprotection.

Similar content being viewed by others

References

  1. Duranski, M.R. et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shiva, S. et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med. 204, 2089–2102 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lundberg, J.O., Weitzberg, E. & Gladwin, M.T. The nitrate-nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Methner, C., Schmidt, K., Cohen, M.V., Downey, J.M. & Krieg, T. Both A2a and A2b adenosine receptors at reperfusion are necessary to reduce infarct size in mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 299, H1262–H1264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cohen, M.V., Yang, X.M., Liu, Y.P., Solenkova, N.V. & Downey, J.M. Cardioprotective PKG-independent NO signaling at reperfusion. Am. J. Physiol. Heart Circ. Physiol. 299, H2028–H2036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Costa, A.D. et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ. Res. 97, 329–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Bolli, R. et al. Myocardial protection at a crossroads. Circ. Res. 95, 125–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Yellon, D.M. & Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Turer, A.T. & Hill, J.A. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am. J. Cardiol. 106, 360–368 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun, J., Morgan, M., Shen, R.F., Steenbergen, C. & Murphy, E. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ. Res. 101, 1155–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Prime, T.A. et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 106, 10764–10769 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chouchani, E.T. et al. Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem. J. 430, 49–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Murray, C.I., Kane, L.A., Uhrigshardt, H., Wang, S.B. & Van Eyk, J.E. Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol. Cell Prot. 10, M110.004721 (2011).

    Article  CAS  Google Scholar 

  14. Porteous, C.M. et al. Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: implications for mitochondria-specific therapies and probes. Biochim. Biophys. Acta 1800, 1009–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X., Kettenhofen, N.J., Shiva, S., Hogg, N. & Gladwin, M.T. Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins. Free Radic. Biol. Med. 44, 1362–1372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kettenhofen, N.J., Wang, X., Gladwin, M.T. & Hogg, N. In-gel detection of S-nitrosated proteins using fluorescence methods. Methods Enzymol. 441, 53–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chouchani, E.T., James, A.M., Fearnley, I.M., Lilley, K.S. & Murphy, M.P. Proteomic approaches to the characterization of protein thiol modification. Curr. Opin. Chem. Biol. 15, 120–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Methner, C., Lukowski, R., Hofman, F., Murphy, M.P. & Krieg, T. Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Res. Cardiol. 108, 337 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Murphy, E. & Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Cochemé, H.M. et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 13, 340–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clementi, E., Brown, G.C., Feelisch, M. & Moncada, S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA 95, 7631–7636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burwell, L.S., Nadtochiy, S.M., Tompkins, A.J., Young, S. & Brookes, P.S. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 394, 627–634 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dahm, C.C., Moore, K. & Murphy, M.P. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite. J. Biol. Chem. 281, 10056–10065 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Galkin, A. & Moncada, S. S-nitrosation of mitochondrial complex I depends on its structural conformation. J. Biol. Chem. 282, 37448–37453 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Carroll, J. et al. Bovine complex I is a complex of 45 different subunits. J. Biol. Chem. 281, 32724–32727 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Galkin, A. et al. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J. Biol. Chem. 283, 20907–20913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ciano, M., Fuszard, M., Heide, H., Botting, C.H. & Galkin, A. Conformation-specific crosslinking of mitochondrial complex I. FEBS Lett. 587, 867–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Gorenkova, N., Robinson, E., Grieve, D.J. & Galkin, A. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia. Antioxid. Redox Signal. published online, http://dx.doi.org/10.1089/ARS.2012.4698 (29 March 2013).

  29. Held, J.M. et al. Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach. Mol. Cell. Proteomics 9, 1400–1410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Requejo, R. et al. Measuring mitochondrial protein thiol redox state. Methods Enzymol. 474, 123–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Bridges, H.R., Birrell, J.A. & Hirst, J. The mitochondrial-encoded subunits of respiratory complex I (NADH:ubiquinone oxidoreductase): identifying residues important in mechanism and disease. Biochem. Soc. Trans. 39, 799–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Sazanov, L.A. & Hinchcliffe, P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311, 1430–1436 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Efremov, R.G. & Sazanov, L.A. Structure of the membrane domain of respiratory complex I. Nature 476, 414–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Baradaran, R., Berrisford, J.M., Minhas, G.S. & Sazanov, L.A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, S. et al. A cell-based phenotypic assay to identify cardioprotective agents. Circ. Res. 110, 948–957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mimaki, M. et al. Understanding mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta 1817, 851–862 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Shiva, S. & Gladwin, M.T. Nitrite mediates cytoprotection after ischemia/reperfusion by modulating mitochondrial function. Basic Res. Cardiol. 104, 113–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Webb, A. et al. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl. Acad. Sci. USA 101, 13683–13688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun, J. et al. Essential role of nitric oxide in acute ischemic preconditioning: S-nitros(yl)ation versus sGC/cGMP/PKG signaling? Free Radic. Biol. Med. 54, 105–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Nadtochiy, S.M., Redman, E., Rahman, I. & Brookes, P.S. Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc. Res. 89, 643–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt, K. et al. Cardioprotective effects of mineralocorticoid receptor antagonists at reperfusion. Eur. Heart J. 31, 1655–1662 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Chappell, J.B. & Hansford, R.G. in Subcellular Components: Preparation and Fractionation (ed. Birnie, G.D.) 77 (Butterworths, London, 1972).

  43. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Wittig, I., Braun, H.P. & Schagger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Rais, I., Karas, M. & Schagger, H. Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics 4, 2567–2571 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Srere, P.A. Citrate synthase. Methods Enzymol. 13, 3–10 (1969).

    Article  CAS  Google Scholar 

  47. Birrell, J.A., Yakovlev, G. & Hirst, J. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen. Biochemistry 48, 12005–12013 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the UK Medical Research Council and grants from the UK Biotechnology and Biological Sciences Research Council (BB/I012923 to M.P.M. and R.C.H.), the Gates Cambridge Trust and the Canadian Institutes of Health Research (doctoral scholarship and postdoctoral fellowship to E.T.C.), the British Heart Foundation (PG/12/42/29655 to T.K.), the US National Institutes of Health (R01-HL071158 to P.S.B.) and the International Society for Heart Research (ISHR-ES/SERVIER research fellowship to C.M.). We thank L. Sazanov and J. Hirst for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.T.C. designed research, carried out mass spectrometry, fluorescence and biochemical experiments, analyzed data from in vivo experiments and cowrote the paper. C.M., S.M.N. and V.R.P. carried out and analyzed data from in vivo experiments. J.R. assisted with DIGE experiments. A.L. and S.D. carried out mass spectrometry experiments. A.M.J. and H.M.C. assisted with research design and data interpretation. A.J.R. designed and performed bioinformatic experiments. L.P., I.M.F., R.C.H., K.S.L., R.A.J.S., T.K. and P.S.B. assisted with research design. M.P.M. designed and directed the project and cowrote the paper.

Corresponding author

Correspondence to Michael P Murphy.

Ethics declarations

Competing interests

M.P.M. and R.A.J.S. hold an EU patent on the technology described in this publication.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Tables 1–6 and Supplementary Methods (PDF 5447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chouchani, E., Methner, C., Nadtochiy, S. et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19, 753–759 (2013). https://doi.org/10.1038/nm.3212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing