Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of immune escape mutations during persistent HCV infection in pregnancy enhances replication of vertically transmitted viruses

This article has been updated

Abstract

Globally, about 1% of pregnant women are persistently infected with the hepatitis C virus (HCV)1. Mother-to-child transmission of HCV occurs in 3–5% of pregnancies2 and accounts for most new childhood infections1,3. HCV-specific CD8+ cytotoxic T lymphocytes (CTLs) are vital in the clearance of acute HCV infections4,5,6, but in the 60–80% of infections that persist, these cells become functionally exhausted or select for mutant viruses that escape T cell recognition7,8,9. Increased HCV replication during pregnancy10,11 suggests that maternofetal immune tolerance mechanisms12 may further impair HCV-specific CTLs, limiting their selective pressure on persistent viruses. To assess this possibility, we characterized circulating viral quasispecies during and after consecutive pregnancies in two women. This revealed a loss of some escape mutations in HLA class I epitopes during pregnancy that was associated with emergence of more fit viruses13. CTL selective pressure was reimposed after childbirth, at which point escape mutations in these epitopes again predominated in the quasispecies and viral load dropped sharply14. Importantly, the viruses transmitted perinatally were those with enhanced fitness due to reversion of escape mutations. Our findings indicate that the immunoregulatory changes of pregnancy reduce CTL selective pressure on HCV class I epitopes, thereby facilitating vertical transmission of viruses with optimized replicative fitness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution and relative fitness of M001 E2 CTL escape variants.
Figure 2: Viremia and viral evolution through consecutive episodes of vertical transmission.
Figure 3: Evolution and relative fitness of M003 NS3 CTL escape variants.
Figure 4: Evolution and relative fitness of M003 NS5B CTL escape variants.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Change history

  • 30 May 2014

    In the version of this article initially published, the K1398R/A1409T variant of the 1395–1410 amino acid sequence was erroneously depicted with an arginine in position 1397 in Figure 3a. The correct depiction of the K1398R/A1409T variant should have arginine in position 1398. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Arshad, M., El-Kamary, S.S. & Jhaveri, R. Hepatitis C virus infection during pregnancy and the newborn period—are they opportunities for treatment? J. Viral Hepat. 18, 229–236 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Mast, E.E. et al. Risk factors for perinatal transmission of hepatitis C virus (HCV) and the natural history of HCV infection acquired in infancy. J. Infect. Dis. 192, 1880–1889 (2005).

    Article  PubMed  Google Scholar 

  3. Bortolotti, F. et al. Epidemiological profile of 806 Italian children with hepatitis C virus infection over a 15-year period. J. Hepatol. 46, 783–790 (2007).

    Article  PubMed  Google Scholar 

  4. Shoukry, N.H. et al. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J. Exp. Med. 197, 1645–1655 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thimme, R. et al. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 194, 1395–1406 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cox, A.L. et al. Cellular immune selection with hepatitis C virus persistence in humans. J. Exp. Med. 201, 1741–1752 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rehermann, B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J. Clin. Invest. 119, 1745–1754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bowen, D.G. & Walker, C.M. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436, 946–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Gervais, A. et al. Decrease in serum ALT and increase in serum HCV RNA during pregnancy in women with chronic hepatitis C. J. Hepatol. 32, 293–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Wejstål, R., Widell, A. & Norkrans, G. HCV-RNA levels increase during pregnancy in women with chronic hepatitis C. Scand. J. Infect. Dis. 30, 111–113 (1998).

    Article  PubMed  Google Scholar 

  12. Guleria, I. & Sayegh, M.H. Maternal acceptance of the fetus: true human tolerance. J. Immunol. 178, 3345–3351 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Salloum, S. et al. Escape from HLA-B*08–restricted CD8 T cells by hepatitis C virus is associated with fitness costs. J. Virol. 82, 11803–11812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, H.H. & Kao, J.H. Hepatitis C virus load during pregnancy and puerperium. BJOG 107, 1503–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Callendret, B. et al. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8+ T cells in early viral evolution. J. Virol. 85, 11833–11845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koziel, M.J. et al. Hepatitis C virus (HCV)-specific cytotoxic T lymphocytes recognize epitopes in the core and envelope proteins of HCV. J. Virol. 67, 7522–7532 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mateu, G., Donis, R.O., Wakita, T., Bukh, J. & Grakoui, A. Intragenotypic JFH1 based recombinant hepatitis C virus produces high levels of infectious particles but causes increased cell death. Virology 376, 397–407 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Kuiken, C. et al. A comprehensive system for consistent numbering of HCV sequences, proteins and epitopes. Hepatology 44, 1355–1361 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Rothwangl, K.B., Manicassamy, B., Uprichard, S.L. & Rong, L. Dissecting the role of putative CD81 binding regions of E2 in mediating HCV entry: putative CD81 binding region 1 is not involved in CD81 binding. Virol. J. 5, 46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Timm, J. et al. CD8 epitope escape and reversion in acute HCV infection. J. Exp. Med. 200, 1593–1604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dittmar, K.A., Goodenbour, J.M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimakami, T. et al. Protease inhibitor-resistant hepatitis C virus mutants with reduced fitness from impaired production of infectious virus. Gastroenterology 140, 667–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Ma, Y., Yates, J., Liang, Y., Lemon, S.M. & Yi, M. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J. Virol. 82, 7624–7639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruhl, M. et al. CD8+ T-cell response promotes evolution of hepatitis C virus nonstructural proteins. Gastroenterology 140, 2064–2073 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Yusim, K. et al. Los alamos hepatitis C immunology database. Appl. Bioinformatics 4, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ruhl, M. et al. Escape from a dominant HLA-B*15–restricted CD8+ T cell response against hepatitis C virus requires compensatory mutations outside the epitope. J. Virol. 86, 991–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mok, J., Pembrey, L., Tovo, P.A. & Newell, M.L. When does mother to child transmission of hepatitis C virus occur? Arch. Dis. Child. Fetal Neonatal Ed. 90, F156–F160 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thobakgale, C.F. et al. Impact of HLA in mother and child on disease progression of pediatric human immunodeficiency virus type 1 infection. J. Virol. 83, 10234–10244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ray, S.C. et al. Divergent and convergent evolution after a common-source outbreak of hepatitis C virus. J. Exp. Med. 201, 1753–1759 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Timm, J. et al. Human leukocyte antigen–associated sequence polymorphisms in hepatitis C virus reveal reproducible immune responses and constraints on viral evolution. Hepatology 46, 339–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Dal Molin, G. et al. Mother-to-infant transmission of hepatitis C virus: rate of infection and assessment of viral load and IgM anti-HCV as risk factors. J. Med. Virol. 67, 137–142 (2002).

    Article  PubMed  Google Scholar 

  32. Aluvihare, V.R., Kallikourdis, M. & Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, C. et al. Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology 126, 329–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Polanczyk, M.J., Hopke, C., Vandenbark, A.A. & Offner, H. Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J. Neurosci. Res. 84, 370–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Alegre, E. et al. Maternal antigen presenting cells are a source of plasmatic HLA-G during pregnancy: longitudinal study during pregnancy. Hum. Immunol. 68, 661–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Bigger, C.B. et al. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J. Virol. 78, 13779–13792 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larrea, E. et al. Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. J. Virol. 81, 3662–3666 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Kasprowicz, V. et al. Hepatitis C virus (HCV) sequence variation induces an HCV-specific T-cell phenotype analogous to spontaneous resolution. J. Virol. 84, 1656–1663 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. ter Borg, M.J., Leemans, W.F., de Man, R.A. & Janssen, H.L. Exacerbation of chronic hepatitis B infection after delivery. J. Viral Hepat. 15, 37–41 (2008).

    CAS  PubMed  Google Scholar 

  41. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  42. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford University Press, New York, 2000).

  44. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vita, R. et al. The immune epitope database 2.0. Nucleic Acids Res. 38, D854–D862 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Rauch, A. et al. Divergent adaptation of hepatitis C virus genotypes 1 and 3 to human leukocyte antigen-restricted immune pressure. Hepatology 50, 1017–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Peters, B. & Sette, A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6, 132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kimura, Y., Gushima, T., Rawale, S., Kaumaya, P. & Walker, C.M. Escape mutations alter proteasome processing of major histocompatibility complex class I–restricted epitopes in persistent hepatitis C virus infection. J. Virol. 79, 4870–4876 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blight, K.J., McKeating, J.A. & Rice, C.M. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uebelhoer, L. et al. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness. PLoS Pathog. 4, e1000143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Hunkler for coordination of the project at The Ohio State University STEPP Clinic and the Nationwide Children's Hospital FACES Clinic. The assistance of C. Potter of the Nationwide Children's Hospital Division of Gastroenterology and G. Mateu of the Emory Vaccine Center is also gratefully acknowledged. We especially thank the subjects and their families for their participation in this study. This work was supported by the US National Institutes of Health (R37-AI47367 to C.M.W., R56-AI096882 and R01-AI096882 to C.M.W. and J.R.H., RO1-DA024565 and R01-AI95690 to S.M.L., R01-AI070101 and R01-DK083356 to A.G., T32-HD043003 and K12-HD043372 to J.R.H., and the Yerkes Research Center Base Grant P51RR-000165 (A.G.)), the Research Institute at Nationwide Children's Hospital (C.M.W. and J.R.H.), and the University of North Carolina University Cancer Research Fund (S.M.L.).

Author information

Authors and Affiliations

Authors

Contributions

J.R.H. and C.M.W. conceived of the study; M.R.P. and J.R.H. developed the patient cohort; J.R.H. and J.A.K. designed and conducted T cell experiments and sequenced viral genomes; S.K., A.A.P. and K.L.M. built constructs and conducted viral fitness assays, which A.G. and S.M.L. supervised; J.R.H. wrote the manuscript with editorial input from the other authors.

Corresponding author

Correspondence to Jonathan R Honegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honegger, J., Kim, S., Price, A. et al. Loss of immune escape mutations during persistent HCV infection in pregnancy enhances replication of vertically transmitted viruses. Nat Med 19, 1529–1533 (2013). https://doi.org/10.1038/nm.3351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing