Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology

Abstract

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element–binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1−/y; Cpeb1−/− double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1−/y mice rescued working memory deficits, demonstrating reversal of this FXS phenotype. Finally, we find that FMRP and CPEB1 balance translation at the level of polypeptide elongation. Our results suggest that disruption of translational homeostasis is causal for FXS and that the maintenance of this homeostasis by FMRP and CPEB1 is necessary for normal neurologic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interplay between FMRP and CPEB1 in the brain.
Figure 2: Cpeb1 deletion ameliorates FXS-related behavioral abnormalities.

Similar content being viewed by others

References

  1. Penagarikano, O., Mulle, J.G. & Warren, S.T. Annu. Rev. Genomics Hum. Genet. 8, 109–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Santoro, M.R., Bray, S.M. & Warren, S.T. Annu. Rev. Pathol. 7, 219–245 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Verkerk, A.J. et al. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Feng, Y. et al. J. Neurosci. 17, 1539–1547 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Darnell, J.C. et al. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bear, M.F., Huber, K.M. & Warren, S.T. Trends Neurosci. 27, 370–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Dölen, G. et al. Neuron 56, 955–962 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bassell, G.J. & Warren, S.T. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharya, A. et al. Neuron 76, 325–337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin, M., Kang, J., Burlin, T.V., Jiang, C. & Smith, C.B. J. Neurosci. 25, 5087–5095 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osterweil, E.K., Krueger, D.D., Reinhold, K. & Bear, M.F. J. Neurosci. 30, 15616–15627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huber, K.M., Kayser, M.S. & Bear, M.F. Science 288, 1254–1257 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, L. et al. Neuron 21, 1129–1139 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, Y., Yario, T.A. & Steitz, J.A. Proc. Natl. Acad. Sci. USA 101, 9666–9670 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alarcon, J.M. et al. Learn. Mem. 11, 318–327 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zearfoss, N.R., Alarcon, J.M., Trifilieff, P., Kandel, E. & Richter, J.D. J. Neurosci. 28, 8502–8509 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, Y.S., Jung, M.Y., Sarkissian, M. & Richter, J.D. EMBO J. 21, 2139–2148 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Udagawa, T. et al. Mol. Cell 47, 253–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berger-Sweeney, J., Zearfoss, N.R. & Richter, J.D. Learn. Mem. 13, 4–7 (2006).

    Article  PubMed  Google Scholar 

  20. Auerbach, B.D., Osterweil, E.K. & Bear, M.F. Nature 480, 63–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shang, Y. et al. J. Neurochem. 111, 635–646 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Pfeiffer, B.E. & Huber, K.M. J. Neurosci. 27, 3120–3130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avgustinovich, D.F., Lipina, T.V., Bondar, N.P., Alekseyenko, O.V. & Kudryavtseva, N.N. Behav. Genet. 30, 101–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Moretti, P., Bouwknecht, J.A., Teague, R., Paylor, R. & Zoghbi, H.Y. Hum. Mol. Genet. 14, 205–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Laroche, S., Davis, S. & Jay, T.M. Hippocampus 10, 438–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Lynch, M.A. Physiol. Rev. 84, 87–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Feng, Y. et al. Mol. Cell 1, 109–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Richter, J.D., Wasserman, W.J. & Smith, L.D. Dev. Biol. 89, 159–167 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Santini, E. et al. Nature 493, 411–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Gkogkas, C.G. et al. Nature 493, 371–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Deacon, R.M.J. Nat. Protoc. 1, 1117–1119 (2006).

    Article  PubMed  Google Scholar 

  32. Raju, R.T. & Rao, B.S.S. Brain and Behavior 108–111 (National Institute of Mental Health and Neurosciences, Bangalore, India, 2004).

  33. Antar, L.N., Afroz, R., Dictenberg, J.B., Carroll, R.C. & Bassell, G.J. J. Neurosci. 24, 2648–2655 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Svitkin, Y.V. & Sonenberg, N. Methods Enzymol. 429, 53–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bordeleau, M.-E. et al. Nat. Chem. Biol. 2, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Deacon, R.M.J. & Rawlins, J.N.P. Nat. Protoc. 1, 7–12 (2006).

    Article  PubMed  Google Scholar 

  37. Brito, L.S., Yamasaki, E.N., Paumgartten, F.J. & Brito, G.N. Braz. J. Med. Biol. Res. 20, 125–135 (1987).

    CAS  PubMed  Google Scholar 

  38. Engin, E. & Treit, D. Behav. Pharmacol. 18, 365–374 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ramos, A. & Mormede, P. Neurosci. Biobehav. Rev. 22, 33–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Baarendse, P.J.J. et al. Hippocampus 18, 11–19 (2008).

    Article  PubMed  Google Scholar 

  41. Morellini, F. & Schachner, M. Eur. J. Neurosci. 23, 1255–1268 (2006).

    Article  PubMed  Google Scholar 

  42. Morellini, F. et al. Cereb. Cortex 20, 2712–2727 (2010).

    Article  PubMed  Google Scholar 

  43. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2001).

  44. McGrew, L.L. & Richter, J.D. EMBO J. 9, 3743–3751 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Dawra for technical assistance, P. Lombroso (Yale University) and C. Proud (University of Southampton) for kind gifts of antibodies (STEP and eEF2, respectively), J. Pelletier (McGill University) for the kind gift of hippuristanol and members of the Richter lab for helpful discussions. T.U. and N.G.F. gratefully acknowledge fellowships from the FRAXA Research Foundation. J.A.H. was supported by US National Institutes of Health NRSA Postdoctoral Fellowship F32GM095060. This work was supported by NIH grants GM46779 and NS079415 to J.D.R. and MH086509 to S. Akbarian.

Author information

Authors and Affiliations

Authors

Contributions

T.U. and J.D.R. conceived of the initial project with much input from L.J.L. T.U., N.G.F. and M.J. designed and performed the majority of the experiments. H.K. and E.K. performed the electrophysiology experiments in Figure 1c,d and Supplementary Figure 4a,b. J.M.A. performed the electrophysiology experiments in Supplementary Figure 4c–e. S. Anilkumar and S.C. performed spine density analysis in Figure 1e,f and Supplementary Figure 5a,b. M.I. created and tested the CPEB antibody used in Supplementary Figure 2f. J.A.H. performed the bioinformatics analysis in Supplementary Table 1. V.C.N. and G.J.B. performed the immunocytochemistry analysis in Supplementary Figure 2a,b. T.U., N.G.F., M.J., K.N. and S. Akbarian contributed to the behavioral experiments in Figure 2. N.G.F. and J.D.R. wrote the manuscript. All authors contributed to interpretation and discussion of results and to editing of the manuscript.

Corresponding author

Correspondence to Joel D Richter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 2–6 (PDF 6503 kb)

Supplementary Table

Supplementary Table 1 (XLSX 77 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udagawa, T., Farny, N., Jakovcevski, M. et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med 19, 1473–1477 (2013). https://doi.org/10.1038/nm.3353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing