Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine

Abstract

Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreased muscle and fat mass in Atg7Δsm mice.
Figure 2: Increased energy expenditure and ameliorated insulin resistance in Atg7Δsm mice fed HFD.
Figure 3: Increased β-oxidation, lipolysis and browning of WAT in HFD-fed Atg7Δsm mice.
Figure 4: Atf4-dependent Fgf21 induction is responsible for improved metabolic profile in Atg7Δsm mice.
Figure 5: Impairment of mtOxPhos in autophagy deficiency is responsible for Atf4-dependent Fgf21 induction.
Figure 6: Atg7Δhep mice are protected from HFD-induced obesity and insulin resistance.

Similar content being viewed by others

References

  1. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325–332 (2008).

    CAS  PubMed  Google Scholar 

  3. Jung, H.S. et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318–324 (2008).

    CAS  PubMed  Google Scholar 

  4. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. USA 106, 19860–19865 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, L., Li, P., Fu, S., Calay, E.S. & Hotamisligil, G.S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, J.J. et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY) 1, 425–437 (2009).

    Article  CAS  Google Scholar 

  9. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507–515 (2009).

    CAS  PubMed  Google Scholar 

  12. Mortensen, M. et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. USA 107, 832–837 (2010).

    CAS  PubMed  Google Scholar 

  13. Petersen, K.F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mootha, V.K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    CAS  PubMed  Google Scholar 

  15. Patti, M.E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. USA 100, 8466–8471 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boushel, R. et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50, 790–796 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hancock, C.R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. USA 105, 7815–7820 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pospisilik, J.A. et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131, 476–491 (2007).

    CAS  PubMed  Google Scholar 

  19. Wredenberg, A. et al. Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance. Biochem. Biophys. Res. Commun. 350, 202–207 (2006).

    CAS  PubMed  Google Scholar 

  20. Baron, A.D., Brechtel, G., Wallace, P. & Edelman, S.V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255, E769–E774 (1988).

    CAS  PubMed  Google Scholar 

  21. Tschöp, M. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2001).

    Google Scholar 

  22. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    CAS  PubMed  Google Scholar 

  23. Danforth, E., Jr. & Burger, A. The role of thyroid hormones in the control of energy expenditure. Clin. Endocrinol. Metab. 13, 581–595 (1984).

    CAS  PubMed  Google Scholar 

  24. Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    CAS  PubMed  Google Scholar 

  25. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    CAS  PubMed  Google Scholar 

  26. Handschin, C. et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J. Clin. Invest. 117, 3463–3474 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Izumiya, Y. et al. FGF21 is an Akt-regulated myokine. FEBS Lett. 582, 3805–3810 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008).

    CAS  PubMed  Google Scholar 

  31. Potthoff, M.J. et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA 106, 10853–10858 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    CAS  PubMed  Google Scholar 

  33. Fisher, F.M. et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152, 2996–3004 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, W. et al. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J. Biol. Chem. 286, 34559–34566 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Harding, H.P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  36. Dey, S. et al. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J. Biol. Chem. 285, 33165–33174 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).

    CAS  PubMed  Google Scholar 

  38. Miyamoto, N. et al. Transcriptional regulation of activating transcription factor 4 under oxidative stress in retinal pigment epithelial ARPE-19/HPV-16 cells. Invest. Ophthalmol. Vis. Sci. 52, 1226–1234 (2011).

    CAS  PubMed  Google Scholar 

  39. Silva, J.M., Wong, A., Carelli, V. & Cortopassi, G.A. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol. Dis. 34, 357–365 (2009).

    CAS  PubMed  Google Scholar 

  40. Bouman, L. et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 18, 769–782 (2011).

    CAS  PubMed  Google Scholar 

  41. Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280–289 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koga, H., Kaushik, S. & Cuervo, A.M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052–3065 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tyynismaa, H. et al. Mitochondrial myopathy induces a starvation-like response. Hum. Mol. Genet. 19, 3948–3958 (2010).

    CAS  PubMed  Google Scholar 

  44. Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kusminski, C.M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539–1549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ibrahimi, A. et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J. Biol. Chem. 274, 26761–26766 (1999).

    CAS  PubMed  Google Scholar 

  48. Storch, J. & Thumser, A.E. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 285, 32679–32683 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fisher, F.M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Silva, J.P. et al. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat. Genet. 26, 336–340 (2000).

    CAS  PubMed  Google Scholar 

  51. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shibata, M. et al. The MAP1–LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419–423 (2009).

    CAS  PubMed  Google Scholar 

  53. Donnelly, K.L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, J. et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120, 261–73 (2005).

    CAS  PubMed  Google Scholar 

  55. Savage, D.B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116, 817–824 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gutiérrez-Juárez, R. et al. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J. Clin. Invest. 116, 1686–1695 (2006).

    PubMed  PubMed Central  Google Scholar 

  57. Choi, C.S. et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem. 282, 22678–22688 (2007).

    CAS  PubMed  Google Scholar 

  58. Bothe, G.W., Haspel, J.A., Smith, C.L., Wiener, H.H. & Burden, S.J. Selective expression of Cre recombinase in skeletal muscle fibers. Genesis 26, 165–166 (2000).

    CAS  PubMed  Google Scholar 

  59. Hotta, Y. et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150, 4625–4633 (2009).

    CAS  PubMed  Google Scholar 

  60. Seligman, A.M., Karnovsky, M.J., Wasserkrug, H.L. & Hanker, J.S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1–14 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.R. Farmer (Boston University) for pGL3B-Fgf21 (−1370/+129), D. Ron (University of Cambridge) for Atf4-null MEFs, R.J. Kaufman (University of Michigan Medical Center) for Eif2aS/S and Eif2aA/A MEFs, S.J. Burden (New York University) for Mlc1f-Cre mice, N. Mizushima (Tokyo Medical and Dental University) for Tet-off Atg5-null MEFs, and H.W. Virgin for insightful comments on the manuscript. This study was supported by the Global Research Laboratory Grant of the National Research Foundation of Korea (K21004000003-10A0500-00310 to M.-S.L. and M. Komatsu) and the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Korea (A080967 to M.-S.L. and A102060 to C.S.C). M.-S.L. received the Bio R&D Program (2008-04090) and the Bio & Medical Technology Development Program grant from the Ministry of Education, Science & Technology, Korea (20110019335).

Author information

Authors and Affiliations

Authors

Contributions

K.H.K., C.S.C. and M.-S.L. designed the study, analyzed data and wrote the manuscript. K.H.K. conducted all experiments except the portions indicated below, assisted by S.H.K., J.M.C., D.H.K. and K.Y.H. Y.T.J. analyzed the metabolic profiling of Atg7Δhep mice. H.O., Y.-N.K. and S.S.K. performed measurements of body composition, indirect calorimetry, the hyperinsulinemic-euglycemic clamp study and the fatty acid oxidation experiments. H.K.K., T.K. and J.H. measured the mitochondrial oxygen consumption. H.L.K. and J.K. performed the electron microscopy. S.H.B., M. Komatsu, H.C., D.C.C., M. Konishi and N.I. provided reagents, tissues, cells or mice and commented on the manuscript.

Corresponding authors

Correspondence to Cheol Soo Choi or Myung-Shik Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–11 and Supplementary Methods (PDF 2560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Jeong, Y., Oh, H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19, 83–92 (2013). https://doi.org/10.1038/nm.3014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing