Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine

Abstract

Mesenchymal stem cells (MSCs) are the focus of intensive efforts worldwide directed not only at elucidating their nature and unique properties but also developing cell-based therapies for a diverse range of diseases. More than three decades have passed since the original formulation of the concept, revolutionary at the time, that multiple connective tissues could emanate from a common progenitor or stem cell retained in the postnatal bone marrow. Despite the many important advances made since that time, substantial ambiguities still plague the field regarding the nature, identity, function, mode of isolation and experimental handling of MSCs. These uncertainties have a major impact on their envisioned therapeutic use.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The whereabouts of MSCs.
Figure 2: How MSCs make it to bone marrow.
Figure 3: The Yin and Yang of MSCs.

Similar content being viewed by others

References

  1. Owen, M. & Friedenstein, A.J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60 (1988).

    CAS  PubMed  Google Scholar 

  2. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bianco, P., Robey, P.G. & Simmons, P.J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2, 313–319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tavassoli, M. & Crosby, W.H. Transplantation of marrow to extramedullary sites. Science 161, 54–56 (1968).

    Article  CAS  PubMed  Google Scholar 

  6. Friedenstein, A.J., Chailakhjan, R.K. & Lalykina, K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393–403 (1970).

    CAS  PubMed  Google Scholar 

  7. Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 9, 641–650 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bianco, P. & Robey, P.G. Skeletal stem cells. in Handbook of Adult and Fetal Stem Cells (ed. Lanza, R.P.) 415–424 (Academic Press, San Diego, 2004).

  10. Streeter, G.L. Developmental horizons in human embryos: review of the histogenesis of cartilage and bone. Contrib. Embryol. 33, 149–168 (1949).

    CAS  PubMed  Google Scholar 

  11. Bianco, P., Riminucci, M., Bonucci, E., Termine, J.D. & Robey, P.G. Bone sialoprotein (BSP) secretion and osteoblast differentiation: relationship to bromodeoxyuridine incorporation, alkaline phosphatase, and matrix deposition. J. Histochem. Cytochem. 41, 183–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Bianco, P., Riminucci, M., Kuznetsov, S. & Robey, P.G. Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology. Crit. Rev. Eukaryot. Gene Expr. 9, 159–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Arai, F., Ohneda, O., Miyamoto, T., Zhang, X.Q. & Suda, T. Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J. Exp. Med. 195, 1549–1563 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan, C.K. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Bianco, P. Bone and the hematopoietic niche: a tale of two stem cells. Blood 117, 5281–5288 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Bush, V. As we may think. Atlantic 101–106 (July 1945).

  18. Bianco, P. & Robey, P.G. Stem cells in tissue engineering. Nature 414, 118–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bianco, P. et al. Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsα-mutated skeletal progenitor cells. J. Clin. Invest. 101, 1737–1744 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Piersanti, S. et al. Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. J. Bone Miner. Res. 25, 1103–1116 (2010).

    CAS  PubMed  Google Scholar 

  21. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Mavilio, F. et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat. Med. 12, 1397–1402 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Horwitz, E.M. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Horwitz, E.M. et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97, 1227–1231 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Horwitz, E.M. et al. Isolated allogeneic bone marrow–derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. USA 99, 8932–8937 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L. & Weissman, I.L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Bianco, P. & Gehron Robey, P. Marrow stromal stem cells. J. Clin. Invest. 105, 1663–1668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas, E.D., Lochte, H.L. Jr., Lu, W.C. & Ferrebee, J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    Article  CAS  PubMed  Google Scholar 

  29. Green, H. Regeneration of the skin after grafting of epidermal cultures. Lab. Invest. 60, 583–584 (1989).

    CAS  PubMed  Google Scholar 

  30. De Luca, M. et al. Permanent coverage of full skin thickness burns with autologous cultured epidermis and reepithelialization of partial skin thickness lesions induced by allogeneic cultured epidermis: a multicentre study in the treatment of children. Burns 18 (suppl. 1), S16–S19 (1992).

    Article  PubMed  Google Scholar 

  31. Ronfard, V., Rives, J.M., Neveux, Y., Carsin, H. & Barrandon, Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 70, 1588–1598 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Pellegrini, G. et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349, 990–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Rama, P. et al. Limbal stem-cell therapy and long-term corneal regeneration. N. Engl. J. Med. 363, 147–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Caplan, A.I. The mesengenic process. Clin. Plast. Surg. 21, 429–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. da Silva Meirelles, L., Chagastelles, P.C. & Nardi, N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Caplan, A.I. All MSCs are pericytes? Cell Stem Cell 3, 229–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Jain, R.K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Díaz-Flores, L. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol. 24, 909–969 (2009).

    PubMed  Google Scholar 

  41. Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Dellavalle, A. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 9, 255–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. da Silva Meirelles, L., Caplan, A.I. & Nardi, N.B. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287–2299 (2008).

    Article  PubMed  Google Scholar 

  45. Woodbury, D., Schwarz, E.J., Prockop, D.J. & Black, I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Katagiri, T. et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127, 1755–1766 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 16, 1400–1406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakashima, K. et al. The novel zinc finger–containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, K.D. et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275–1284 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Willingham, M.C. & Pastan, I. Cyclic amp and cell morphology in cultured fibroblasts. Effects on cell shape, microfilament and microtubule distribution, and orientation to substratum. J. Cell Biol. 67, 146–159 (1975).

    Article  CAS  PubMed  Google Scholar 

  52. Niibe, K. et al. Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS ONE 6, e17610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2, 3081–3089 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Prockop, D.J., Kota, D.J., Bazhanov, N. & Reger, R.L. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J. Cell. Mol. Med. 14, 2190–2199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Caplan, A.I. & Correa, D. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Friedenstein, A.J., Chailakhyan, R.K., Latsinik, N.V., Panasyuk, A.F. & Keiliss-Borok, I.V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17, 331–340 (1974).

    Article  CAS  PubMed  Google Scholar 

  57. Au, P., Tam, J., Fukumura, D. & Jain, R.K. Bone marrow–derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111, 4551–4558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Melero-Martin, J.M. et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood–derived progenitor cells. Circ. Res. 103, 194–202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moioli, E.K. et al. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS ONE 3, e3922 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Park, D., Sykes, D.B. & Scadden, D.T. The hematopoietic stem cell niche. Front. Biosci. 17, 30–39 (2012).

    Article  CAS  Google Scholar 

  61. Haniffa, M.A., Collin, M.P., Buckley, C.D. & Dazzi, F. Mesenchymal stem cells: the fibroblasts' new clothes? Haematologica 94, 258–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Schrepfer, S. et al. Stem cell transplantation: the lung barrier. Transplant. Proc. 39, 573–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, R.H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuznetsov, S., Riminucci, M., Robey, P.G. & Bianco, P. Post-natal skeletal stem cells: methods for isolation and analysis of bone marrow stromal cells (BMSCs) from post-natal murine and human marrow. in Cell Biology: A Laboratory Handbook (ed. Celis, J.E.) 79–86 (Elsevier, San Diego, 2006).

Download references

Acknowledgements

Note that the authors are listed in alphabetical order in the author list. This work was supported in part by grants from Telethon (GGP09227), Fondazione Roma, Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Ministero della Salute, EU (Angioscaff) and Fondazione Institut Pasteur-Cenci Bolognetti (to P.B.), the US National Institutes of Health (NIH) (R01 DK056638, HL69438, HL097819, HL097700, HL116340 to P.S.F.), NIH DK57501 (to X.C.), the National Institute of Dental and Craniofacial Research (NIDCR), NIH (DE019412 and DE016513 to C.-Y.W.), NIH R01DE018248 and R01EB009663 to J.J.M. and the Division of Intramural Research, NIDCR of the Intramural Research Program, NIH, Department of Health and Human Services (to P.G.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bianco.

Ethics declarations

Competing interests

P.J.S. is an employee of Mesoblast Ltd., a company engaged in clinical trials using mesenchymal precursor cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianco, P., Cao, X., Frenette, P. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19, 35–42 (2013). https://doi.org/10.1038/nm.3028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing