Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Unbiased identification of target antigens of CD8+ T cells with combinatorial libraries coding for short peptides

Abstract

Cytotoxic CD8+ T cells recognize the antigenic peptides presented by class I major histocompatibility complex (MHC) molecules. These T cells have key roles in infectious diseases, autoimmunity and tumor immunology, but there is currently no unbiased method for the reliable identification of their target antigens. This is because of the low affinities of antigen-specific T cell receptors (TCR) to their target MHC-peptide complexes, the polyspecificity of these TCRs and the requirement that these TCRs recognize protein antigens that have been processed by antigen-presenting cells (APCs). Here we describe a technology for the unbiased identification of the antigenic peptides presented by MHC class I molecules. The technology uses plasmid-encoded combinatorial peptide libraries and a single-cell detection system. We validated this approach using a well-characterized influenza-virus–specific TCR, MHC and peptide combination. Single APCs carrying antigenic peptides can be detected among several million APCs that carry irrelevant peptides. The identified peptide sequences showed a converging pattern of mimotopes that revealed the parent influenza antigen. This technique should be generally applicable to the identification of disease-relevant T cell antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the experimental strategy.
Figure 2: Activation of TCR-transfected T hybridoma cells.
Figure 3: Activation of 58-JM22-CD8-sGFP cells by library-transfected COS-7 cells and the identification of mimotopes of flu(58–66).

Similar content being viewed by others

References

  1. Appay, V., Douek, D.C. & Price, D.A. CD8+ T cell efficacy in vaccination and disease. Nat. Med. 14, 623–628 (2008).

    Article  CAS  Google Scholar 

  2. Kaufmann, S.H. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Microbiol. 5, 491–504 (2007).

    Article  CAS  Google Scholar 

  3. Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  Google Scholar 

  4. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  5. Walter, U. & Santamaria, P. CD8+ T cells in autoimmunity. Curr. Opin. Immunol. 17, 624–631 (2005).

    Article  CAS  Google Scholar 

  6. Goverman, J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 9, 393–407 (2009).

    Article  CAS  Google Scholar 

  7. Friese, M.A. & Fugger, L. Pathogenic CD8+ T cells in multiple sclerosis. Ann. Neurol. 66, 132–141 (2009).

    Article  CAS  Google Scholar 

  8. Seitz, S. et al. Reconstitution of paired T cell receptor α- and β-chains from microdissected single cells of human inflammatory tissues. Proc. Natl. Acad. Sci. USA 103, 12057–12062 (2006).

    Article  CAS  Google Scholar 

  9. Wucherpfennig, K.W. et al. Polyspecificity of T cell and B cell receptor recognition. Semin. Immunol. 19, 216–224 (2007).

    Article  CAS  Google Scholar 

  10. Nino-Vasquez, J.J. et al. A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Mol. Immunol. 40, 1063–1074 (2004).

    Article  CAS  Google Scholar 

  11. Zhao, Y. et al. Combinatorial peptide libraries and biometric score matrices permit the quantitative analysis of specific and degenerate interactions between clonotypic TCR and MHC peptide ligands. J. Immunol. 167, 2130–2141 (2001).

    Article  CAS  Google Scholar 

  12. Hemmer, B. et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat. Med. 5, 1375–1382 (1999).

    Article  CAS  Google Scholar 

  13. Hammer, G.E., Kanaseki, T. & Shastri, N. The final touches make perfect the peptide-MHC class I repertoire. Immunity 26, 397–406 (2007).

    Article  CAS  Google Scholar 

  14. Vyas, J.M., Van der Veen, A.G. & Ploegh, H.L. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 8, 607–618 (2008).

    Article  CAS  Google Scholar 

  15. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  Google Scholar 

  16. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    Article  CAS  Google Scholar 

  17. Wong, F.S. et al. Identification of an MHC class I–restricted autoantigen in type I diabetes by screening an organ-specific cDNA library. Nat. Med. 5, 1026–1031 (1999).

    Article  CAS  Google Scholar 

  18. Smith, E.S. et al. Lethality-based selection of recombinant genes in mammalian cells: application to identifying tumor antigens. Nat. Med. 7, 967–972 (2001).

    Article  CAS  Google Scholar 

  19. Boon, T., Coulie, P.G., Van den Eynde, B.J. & Van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol. 24, 175–208 (2006).

    Article  CAS  Google Scholar 

  20. Crawford, F. et al. Use of baculovirus MHC/peptide display libraries to characterize T-cell receptor ligands. Immunol. Rev. 210, 156–170 (2006).

    Article  CAS  Google Scholar 

  21. Karttunen, J. & Shastri, N. Measurements of ligand induced activation in single viable T cells using lacZ reporter gene. Proc. Natl. Acad. Sci. USA 88, 3972–3976 (1991).

    Article  CAS  Google Scholar 

  22. Fiering, S. et al. Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. Genes Dev. 4, 1823–1834 (1990).

    Article  CAS  Google Scholar 

  23. Gotch, F., Rothbard, J., Howland, K., Townsend, A. & McMichael, A. Cytotoxic lymphocytes-T recognize a fragment of influenza-virus matrix protein in association with HLA-A2. Nature 326, 881–882 (1987).

    Article  CAS  Google Scholar 

  24. Stewart-Jones, G.B.E., McMichael, A.J., Bell, J.I., Stuart, D.I. & Jones, E.Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

    Article  CAS  Google Scholar 

  25. Ishizuka, J. et al. The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vβ domain. Immunity 28, 171–182 (2008).

    Article  CAS  Google Scholar 

  26. Blank, U., Boitel, B., Mège, D., Ermonval, M. & Acuto, O. Analysis of tetanus toxin peptide/DR recognition by human T cell receptors reconstituted into a murine T cell hybridoma. Eur. J. Immunol. 23, 3057–3065 (1993).

    Article  CAS  Google Scholar 

  27. Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    Article  CAS  Google Scholar 

  28. Kawakami, N. et al. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med. 201, 1805–1814 (2005).

    Article  CAS  Google Scholar 

  29. Venturi, V., Price, D.A., Douek, D.C. & Davenport, M.P. The molecular basis for public T-cell responses? Nat. Rev. Immunol. 8, 231–238 (2008).

    Article  CAS  Google Scholar 

  30. Bansal, A. et al. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription. J. Exp. Med. 89, 51–59 (2010).

    Article  Google Scholar 

  31. Bendle, G.M. et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16, 565–570 (2010).

    Article  CAS  Google Scholar 

  32. Lehner, P.J. et al. Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the Vβ17 gene segment. J. Exp. Med. 181, 79–91 (1995).

    Article  CAS  Google Scholar 

  33. Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 663–664 (1995).

    Article  CAS  Google Scholar 

  34. Bettinotti, M.P. et al. New HLA-A, -B, and -C locus–specific primers for PCR amplification from cDNA: application in clinical immunology. J. Immunol. Methods 279, 143–148 (2003).

    Article  CAS  Google Scholar 

  35. Pircher, H. et al. T cell tolerance to Mlsa encoded antigens in T cell receptor Vβ8.1 chain transgenic mice. EMBO J. 8, 719–727 (1989).

    Article  CAS  Google Scholar 

  36. Gluzman, Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Meinl and W.E.F. Klinkert for comments on the manuscript, D. Hackl and M. Ackmann for help with synthesizing the plasmid pcDNA-NFAT-sGFP, I. Bartholomäus and M. Mues for advice regarding fluorescence microscopy, I. Eiglmeier for expert technical assistance and K. Ogston for editing the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (grant SFB 571 A1).

Author information

Authors and Affiliations

Authors

Contributions

K.S. designed and performed most of the experiments and contributed to the writing of the manuscript, J.M. contributed to cloning experiments, N.K. contributed to microscopy experiments, H.W. and R.H. supervised and supported the study and contributed to the writing of the manuscript, and K.D. conceived of, designed and supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Klaus Dornmair.

Ethics declarations

Competing interests

The Ludwig-Maximilians-University, Munich, Germany, has filed European and International patent applications describing the technology used in this study (K.D., K.S. and R.H.).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Methods (PDF 6560 kb)

Supplementary Video 1

Activation of a 58-JM22-CD8-sGFP cell. Time-lapse fluorescence microscopy of a coculture of 58-JM22-CD8-sGFP cells and COS-7 cells. (AVI 1060 kb)

Supplementary Video 2

Isolation of an antigen-expressing cell. We show the isolation of an activated green fluorescent 58-JM22-CD8-sGFP cell together with a subjacent antigen-expressing COS-7 cell. (AVI 1171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siewert, K., Malotka, J., Kawakami, N. et al. Unbiased identification of target antigens of CD8+ T cells with combinatorial libraries coding for short peptides. Nat Med 18, 824–828 (2012). https://doi.org/10.1038/nm.2720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2720

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research