Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of implantation: strategies for successful pregnancy

This article has been updated

Abstract

Physiological and molecular processes initiated during implantation for pregnancy success are complex but highly organized. This review primarily highlights adverse ripple effects arising from defects during the peri-implantation period that perpetuate throughout pregnancy. These defects are reflected in aberrations in embryo spacing, decidualization, placentation and intrauterine embryonic growth, manifesting in preeclampsia, miscarriages and/or preterm birth. Understanding molecular signaling networks that coordinate strategies for successful implantation and decidualization may lead to approaches to improve the outcome of natural pregnancy and pregnancy conceived from in vitro fertilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signaling network for uterine receptivity and implantation.
Figure 2: Signaling networks in decidualization.
Figure 3: Potential adverse ripple effects during pregnancy arising from stage-specific defects in mice.
Figure 4: Plausible charting of adverse ripple effects in human pregnancy.

Similar content being viewed by others

Change history

  • 08 January 2013

     In the version of this article initially published, the references included in Figure 3a were incorrect. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Dey, S.K. et al. Molecular cues to implantation. Endocr. Rev. 25, 341–373 (2004).

    CAS  PubMed  Google Scholar 

  2. Wang, H. & Dey, S.K. Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199 (2006).

    PubMed  Google Scholar 

  3. Carson, D.D. et al. Embryo implantation. Dev. Biol. 223, 217–237 (2000).

    CAS  PubMed  Google Scholar 

  4. Norwitz, E.R., Schust, D.J. & Fisher, S.J. Implantation and the survival of early pregnancy. N. Engl. J. Med. 345, 1400–1408 (2001).

    CAS  PubMed  Google Scholar 

  5. Wilcox, A.J., Baird, D.D. & Weinberg, C.R. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796–1799 (1999).

    CAS  PubMed  Google Scholar 

  6. Nagaoka, S.I., Hassold, T.J. & Hunt, P.A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Psychoyos, A. Endocrine Control of Egg Implantation (American Physiology Society, Washington, D.C., 1973).

  8. Paria, B.C., Huet-Hudson, Y.M. & Dey, S.K. Blastocyst's state of activity determines the “window” of implantation in the receptive mouse uterus. Proc. Natl. Acad. Sci. USA 90, 10159–10162 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Daikoku, T. et al. Conditional deletion of MSX homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev. Cell 21, 1014–1024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nikas, G. & Psychoyos, A. Uterine pinopodes in peri-implantation human endometrium. Clinical relevance. Ann. NY Acad. Sci. 816, 129–142 (1997).

    CAS  PubMed  Google Scholar 

  11. Ma, W.G., Song, H., Das, S.K., Paria, B.C. & Dey, S.K. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc. Natl. Acad. Sci. USA 100, 2963–2968 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Giudice, L.C. Potential biochemical markers of uterine receptivity. Hum. Reprod. 14 (suppl. 2), 3–16 (1999).

    CAS  PubMed  Google Scholar 

  13. Song, H., Lim, H., Das, S.K., Paria, B.C. & Dey, S.K. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol. Endocrinol. 14, 1147–1161 (2000).

    CAS  PubMed  Google Scholar 

  14. Winuthayanon, W., Hewitt, S.C., Orvis, G.D., Behringer, R.R. & Korach, K.S. Uterine epithelial estrogen receptor α is dispensable for proliferation but essential for complete biological and biochemical responses. Proc. Natl. Acad. Sci. USA 107, 19272–19277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Franco, H.L. et al. Epithelial progesterone receptor exhibits pleiotropic roles in uterine development and function. FASEB J. 26, 1218–1227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Simon, L. et al. Stromal progesterone receptors mediate induction of Indian Hedgehog (IHH) in uterine epithelium and its downstream targets in uterine stroma. Endocrinology 150, 3871–3876 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stewart, C.L. et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79 (1992).

    CAS  PubMed  Google Scholar 

  18. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Laird, S.M. et al. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum. Reprod. 12, 569–574 (1997).

    CAS  PubMed  Google Scholar 

  20. Piccinni, M.P. et al. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat. Med. 4, 1020–1024 (1998).

    CAS  PubMed  Google Scholar 

  21. Hambartsoumian, E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am. J. Reprod. Immunol. 39, 137–143 (1998).

    CAS  PubMed  Google Scholar 

  22. Brinsden, P.R., Alam, V., de Moustier, B. & Engrand, P. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil. Steril. 91, 1445–1447 (2009).

    CAS  PubMed  Google Scholar 

  23. Hu, W., Feng, Z., Teresky, A.K. & Levine, A.J. p53 regulates maternal reproduction through LIF. Nature 450, 721–724 (2007).

    CAS  PubMed  Google Scholar 

  24. Hirota, Y. et al. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J. Clin. Invest. 120, 803–815 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang, H.J. et al. Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc. Natl. Acad. Sci. USA 106, 9761–9766 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Patounakis, G. et al. The p53 codon 72 single nucleotide polymorphism lacks a significant effect on implantation rate in fresh in vitro fertilization cycles: an analysis of 1,056 patients. Fertil. Steril. 92, 1290–1296 (2009).

    CAS  PubMed  Google Scholar 

  27. Tranguch, S. et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc. Natl. Acad. Sci. USA 102, 14326–14331 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, Z. et al. FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol. Endocrinol. 20, 2682–2694 (2006).

    CAS  PubMed  Google Scholar 

  29. Tranguch, S. et al. FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific. J. Clin. Invest. 117, 1824–1834 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirota, Y. et al. Uterine FK506-binding protein 52 (FKBP52)-peroxiredoxin-6 (PRDX6) signaling protects pregnancy from overt oxidative stress. Proc. Natl. Acad. Sci. USA 107, 15577–15582 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirota, Y. et al. Deficiency of immunophilin FKBP52 promotes endometriosis. Am. J. Pathol. 173, 1747–1757 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, H. et al. FKBP52 is regulated by HOXA10 during decidualizaton and in endometriosis. Reproduction 143, 531–538 (2012).

    CAS  PubMed  Google Scholar 

  33. Xu, J., Wu, R.C. & O'Malley, B.W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mukherjee, A. et al. Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol. Cell. Biol. 26, 6571–6583 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukherjee, A., Amato, P., Allred, D.C., DeMayo, F.J. & Lydon, J.P. Steroid receptor coactivator 2 is required for female fertility and mammary morphogenesis: insights from the mouse, relevance to the human. Nucl. Recept. Signal. 5, e011 (2007).

    PubMed  PubMed Central  Google Scholar 

  36. Matsumoto, H., Zhao, X., Das, S.K., Hogan, B.L. & Dey, S.K. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev. Biol. 245, 280–290 (2002).

    CAS  PubMed  Google Scholar 

  37. Lee, K. et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat. Genet. 38, 1204–1209 (2006).

    CAS  PubMed  Google Scholar 

  38. Wei, Q., Levens, E.D., Stefansson, L. & Nieman, L.K. Indian Hedgehog and its targets in human endometrium: menstrual cycle expression and response to CDB-2914. J. Clin. Endocrinol. Metab. 95, 5330–5337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kurihara, I. et al. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet. 3, e102 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Petit, F.G. et al. Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency. Proc. Natl. Acad. Sci. USA 104, 6293–6298 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Q. et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science 331, 912–916 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huyen, D.V. & Bany, B.M. Evidence for a conserved function of heart and neural crest derivatives expressed transcript 2 in mouse and human decidualization. Reproduction 142, 353–368 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pavlova, A., Boutin, E., Cunha, G. & Sassoon, D. Msx1 (Hox-7.1) in the adult mouse uterus: cellular interactions underlying regulation of expression. Development 120, 335–345 (1994).

    CAS  PubMed  Google Scholar 

  44. Daikoku, T. et al. Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine-homeobox-Wnt signaling in implantation. Mol. Endocrinol. 18, 1238–1250 (2004).

    CAS  PubMed  Google Scholar 

  45. Nallasamy, S., Li, Q., Bagchi, M.K. & Bagchi, I.C. Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium. PLoS Genet. 8, e1002500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun, X. et al. Kruppel-like factor 5 (KLF5) is critical for conferring uterine receptivity to implantation. Proc. Natl. Acad. Sci. USA 109, 1145–1150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, R., Zhou, Z., Zhao, D. & Chen, C. The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol. Endocrinol. 25, 1137–1144 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ema, M. et al. Kruppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 3, 555–567 (2008).

    CAS  PubMed  Google Scholar 

  49. Lejeune, B., Van Hoeck, J. & Leroy, F. Transmitter role of the luminal uterine epithelium in the induction of decidualization in rats. J. Reprod. Fertil. 61, 235–240 (1981).

    CAS  PubMed  Google Scholar 

  50. Das, S.K. et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120, 1071–1083 (1994).

    CAS  PubMed  Google Scholar 

  51. Paria, B.C., Elenius, K., Klagsbrun, M. & Dey, S.K. Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation. Development 126, 1997–2005 (1999).

    CAS  PubMed  Google Scholar 

  52. Raab, G. et al. Mouse preimplantation blastocysts adhere to cells expressing the transmembrane form of heparin-binding EGF-like growth factor. Development 122, 637–645 (1996).

    CAS  PubMed  Google Scholar 

  53. Hamatani, T. et al. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc. Natl. Acad. Sci. USA 101, 10326–10331 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Paria, B.C. et al. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc. Natl. Acad. Sci. USA 98, 1047–1052 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwamoto, R. et al. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl. Acad. Sci. USA 100, 3221–3226 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xie, H. et al. Maternal heparin-binding-EGF deficiency limits pregnancy success in mice. Proc. Natl. Acad. Sci. USA 104, 18315–18320 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stavreus-Evers, A. et al. Co-existence of heparin-binding epidermal growth factor-like growth factor and pinopodes in human endometrium at the time of implantation. Mol. Hum. Reprod. 8, 765–769 (2002).

    CAS  PubMed  Google Scholar 

  58. Yoo, H.J., Barlow, D.H. & Mardon, H.J. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev. Genet. 21, 102–108 (1997).

    CAS  PubMed  Google Scholar 

  59. Chobotova, K. et al. Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech. Dev. 119, 137–144 (2002).

    CAS  PubMed  Google Scholar 

  60. Genbacev, O.D. et al. Trophoblast L-selectin–mediated adhesion at the maternal-fetal interface. Science 299, 405–408 (2003).

    CAS  PubMed  Google Scholar 

  61. Lessey, B.A. Assessment of endometrial receptivity. Fertil. Steril. 96, 522–529 (2011).

    CAS  PubMed  Google Scholar 

  62. Prakobphol, A., Genbacev, O., Gormley, M., Kapidzic, M. & Fisher, S.J. A role for the L-selectin adhesion system in mediating cytotrophoblast emigration from the placenta. Dev. Biol. 298, 107–117 (2006).

    CAS  PubMed  Google Scholar 

  63. Lim, H. et al. Multiple female reproductive failures in cyclooxygenase 2–deficient mice. Cell 91, 197–208 (1997).

    CAS  PubMed  Google Scholar 

  64. Lee, K.Y. et al. Bmp2 is critical for the murine uterine decidual response. Mol. Cell. Biol. 27, 5468–5478 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Benson, G.V. et al. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 122, 2687–2696 (1996).

    CAS  PubMed  Google Scholar 

  66. Lim, H., Ma, L., Ma, W.G., Maas, R.L. & Dey, S.K. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol. Endocrinol. 13, 1005–1017 (1999).

    CAS  PubMed  Google Scholar 

  67. Gendron, R.L. et al. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol. Reprod. 56, 1097–1105 (1997).

    CAS  PubMed  Google Scholar 

  68. Tan, J. et al. Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech. Dev. 111, 99–113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Taylor, H.S., Arici, A., Olive, D. & Igarashi, P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J. Clin. Invest. 101, 1379–1384 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Taylor, H.S., Igarashi, P., Olive, D.L. & Arici, A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J. Clin. Endocrinol. Metab. 84, 1129–1135 (1999).

    CAS  PubMed  Google Scholar 

  71. Popovici, R.M., Kao, L.C. & Giudice, L.C. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology. Endocrinology 141, 3510–3513 (2000).

    CAS  PubMed  Google Scholar 

  72. Gellersen, B., Brosens, I.A. & Brosens, J.J. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin. Reprod. Med. 25, 445–453 (2007).

    CAS  PubMed  Google Scholar 

  73. Brar, A.K. et al. Laminin decreases PRL and IGFBP-1 expression during in vitro decidualization of human endometrial stromal cells. J. Cell. Physiol. 163, 30–37 (1995).

    CAS  PubMed  Google Scholar 

  74. Arias-Stella, J. The Arias-Stella reaction: facts and fancies four decades after. Adv. Anat. Pathol. 9, 12–23 (2002).

    PubMed  Google Scholar 

  75. Mori, M. et al. Death effector domain-containing protein (DEDD) is required for uterine decidualization during early pregnancy in mice. J. Clin. Invest. 121, 318–327 (2011).

    CAS  PubMed  Google Scholar 

  76. Bilinski, P., Roopenian, D. & Gossler, A. Maternal IL-11Rα function is required for normal decidua and fetoplacental development in mice. Genes Dev. 12, 2234–2243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Robb, L. et al. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat. Med. 4, 303–308 (1998).

    CAS  PubMed  Google Scholar 

  78. Mizugishi, K. et al. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J. Clin. Invest. 117, 2993–3006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Salker, M.S. et al. Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat. Med. 17, 1509–1513 (2011).

    CAS  PubMed  Google Scholar 

  80. Kim, J.J. et al. Expression of cyclooxygenase-1 and -2 in the baboon endometrium during the menstrual cycle and pregnancy. Endocrinology 140, 2672–2678 (1999).

    CAS  PubMed  Google Scholar 

  81. Critchley, H.O. et al. Role of inflammatory mediators in human endometrium during progesterone withdrawal and early pregnancy. J. Clin. Endocrinol. Metab. 84, 240–248 (1999).

    CAS  PubMed  Google Scholar 

  82. Marions, L. & Danielsson, K.G. Expression of cyclo-oxygenase in human endometrium during the implantation period. Mol. Hum. Reprod. 5, 961–965 (1999).

    CAS  PubMed  Google Scholar 

  83. Lim, H. et al. Cyclo-oxygenase-2–derived prostacyclin mediates embryo implantation in the mouse via PPARδ. Genes Dev. 13, 1561–1574 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, H. et al. Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor δ signaling is critical to pregnancy success. J. Biol. Chem. 282, 37770–37782 (2007).

    CAS  PubMed  Google Scholar 

  85. Ruan, Y.C. et al. Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nat. Med. 18, 1112–1117 (2012).

    CAS  PubMed  Google Scholar 

  86. Hayashi, K. et al. Wnt genes in the mouse uterus: potential regulation of implantation. Biol. Reprod. 80, 989–1000 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tulac, S. et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J. Clin. Endocrinol. Metab. 88, 3860–3866 (2003).

    CAS  PubMed  Google Scholar 

  88. Mohamed, O.A. et al. Uterine Wnt/β-catenin signaling is required for implantation. Proc. Natl. Acad. Sci. USA 102, 8579–8584 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Franco, H.L. et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 25, 1176–1187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dunlap, K.A. et al. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol. Reprod. 85, 386–396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Parr, B.A. & McMahon, A.P. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature 395, 707–710 (1998).

    CAS  PubMed  Google Scholar 

  92. Jeong, J.W. et al. Foxa2 is essential for mouse endometrial gland development and fertility. Biol. Reprod. 83, 396–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jeong, J.W. et al. β-catenin mediates glandular formation and dysregulation of β-catenin induces hyperplasia formation in the murine uterus. Oncogene 28, 31–40 (2009).

    CAS  PubMed  Google Scholar 

  94. Song, H. & Lim, H. Evidence for heterodimeric association of leukemia inhibitory factor (LIF) receptor and gp130 in the mouse uterus for LIF signaling during blastocyst implantation. Reproduction 131, 341–349 (2006).

    CAS  PubMed  Google Scholar 

  95. Song, H. et al. Cytosolic phospholipase A2α is crucial [correction of A2α deficiency is crucial] for 'on-time' embryo implantation that directs subsequent development. Development 129, 2879–2889 (2002).

    CAS  PubMed  Google Scholar 

  96. Wang, H., Dey, S.K. & Maccarrone, M. Jekyll and Hyde: two faces of cannabinoid signaling in male and female fertility. Endocr. Rev. 27, 427–448 (2006).

    CAS  PubMed  Google Scholar 

  97. Sun, X. et al. Endocannabinoid signaling directs differentiation of trophoblast cell lineages and placentation. Proc. Natl. Acad. Sci. USA 107, 16887–16892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, H. et al. Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat. Med. 10, 1074–1080 (2004).

    CAS  PubMed  Google Scholar 

  99. Horne, A.W. et al. CB1 expression is attenuated in Fallopian tube and decidua of women with ectopic pregnancy. PLoS ONE 3, e3969 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. Wang, H. et al. Fatty acid amide hydrolase deficiency limits early pregnancy events. J. Clin. Invest. 116, 2122–2131 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Trabucco, E. et al. Endocannabinoid system in first trimester placenta: low FAAH and high CB1 expression characterize spontaneous miscarriage. Placenta 30, 516–522 (2009).

    CAS  PubMed  Google Scholar 

  102. Leach, R.E. et al. Pre-eclampsia and expression of heparin-binding EGF-like growth factor. Lancet 360, 1215–1219 (2002).

    CAS  PubMed  Google Scholar 

  103. Stavreus-Evers, A., Koraen, L., Scott, J.E., Zhang, P. & Westlund, P. Distribution of cyclooxygenase-1, cyclooxygenase-2, and cytosolic phospholipase A2 in the luteal phase human endometrium and ovary. Fertil. Steril. 83, 156–162 (2005).

    CAS  PubMed  Google Scholar 

  104. Ye, X. et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435, 104–108 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, H. et al. Rescue of female infertility from the loss of cyclooxygenase-2 by compensatory up-regulation of cyclooxygenase-1 is a function of genetic makeup. J. Biol. Chem. 279, 10649–10658 (2004).

    CAS  PubMed  Google Scholar 

  106. Yotsumoto, S. et al. Expression of adrenomedullin, a hypotensive peptide, in the trophoblast giant cells at the embryo implantation site in mouse. Dev. Biol. 203, 264–275 (1998).

    CAS  PubMed  Google Scholar 

  107. Li, M., Yee, D., Magnuson, T.R., Smithies, O. & Caron, K.M. Reduced maternal expression of adrenomedullin disrupts fertility, placentation, and fetal growth in mice. J. Clin. Invest. 116, 2653–2662 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Di Iorio, R., Marinoni, E., Scavo, D., Letizia, C. & Cosmi, E.V. Adrenomedullin in pregnancy. Lancet 349, 328 (1997).

    CAS  PubMed  Google Scholar 

  109. Li, M., Wu, Y. & Caron, K.M. Haploinsufficiency for adrenomedullin reduces pinopodes and diminishes uterine receptivity in mice. Biol. Reprod. 79, 1169–1175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Maltepe, E., Bakardjiev, A.I. & Fisher, S.J. The placenta: transcriptional, epigenetic, and physiological integration during development. J. Clin. Invest. 120, 1016–1025 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hunkapiller, N.M. et al. A role for Notch signaling in trophoblast endovascular invasion and in the pathogenesis of pre-eclampsia. Development 138, 2987–2998 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cross, J.C. The genetics of pre-eclampsia: a feto-placental or maternal problem? Clin. Genet. 64, 96–103 (2003).

    CAS  PubMed  Google Scholar 

  113. Cui, Y. et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature 484, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dokras, A. et al. Severe feto-placental abnormalities precede the onset of hypertension and proteinuria in a mouse model of preeclampsia. Biol. Reprod. 75, 899–907 (2006).

    CAS  PubMed  Google Scholar 

  115. Lam, C., Lim, K.H. & Karumanchi, S.A. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension 46, 1077–1085 (2005).

    CAS  PubMed  Google Scholar 

  116. Ormandy, C.J. et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11, 167–178 (1997).

    CAS  PubMed  Google Scholar 

  117. Harrison, D.E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hirota, Y., Cha, J., Yoshie, M., Daikoku, T. & Dey, S.K. Heightened uterine mammalian target of rapamycin complex 1 (mTORC1) signaling provokes preterm birth in mice. Proc. Natl. Acad. Sci. USA 108, 18073–18078 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cnattingius, S., Forman, M.R., Berendes, H.W. & Isotalo, L. Delayed childbearing and risk of adverse perinatal outcome. A population-based study. J. Am. Med. Assoc. 268, 886–890 (1992).

    CAS  Google Scholar 

  120. Krieg, S.A., Henne, M.B. & Westphal, L.M. Obstetric outcomes in donor oocyte pregnancies compared with advanced maternal age in in vitro fertilization pregnancies. Fertil. Steril. 90, 65–70 (2008).

    PubMed  Google Scholar 

  121. Nelson, S.M. & Lawlor, D.A. Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med. 8, e1000386 (2011).

    PubMed  PubMed Central  Google Scholar 

  122. Demidenko, Z.N., Korotchkina, L.G., Gudkov, A.V. & Blagosklonny, M.V. Paradoxical suppression of cellular senescence by p53. Proc. Natl. Acad. Sci. USA 107, 9660–9664 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Paria, B.C. & Dey, S.K. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA 87, 4756–4760 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Melin, J. et al. In vitro embryo culture in defined, sub-microliter volumes. Dev. Dyn. 238, 950–955 (2009).

    PubMed  PubMed Central  Google Scholar 

  125. Sjöblom, C., Wikland, M. & Robertson, S.A. Granulocyte-macrophage colony–stimulating factor promotes human blastocyst development in vitro. Hum. Reprod. 14, 3069–3076 (1999).

    PubMed  Google Scholar 

  126. Martin, K.L., Barlow, D.H. & Sargent, I.L. Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum. Reprod. 13, 1645–1652 (1998).

    CAS  PubMed  Google Scholar 

  127. Lim, H.J. & Dey, S.K. HB-EGF: a unique mediator of embryo-uterine interactions during implantation. Exp. Cell Res. 315, 619–626 (2009).

    CAS  PubMed  Google Scholar 

  128. Diaz-Gimeno, P. et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertility and sterility 95 50–60, 60 e51–15 (2011).

    Google Scholar 

  129. Burnum, K.E. et al. Imaging mass spectrometry reveals unique protein profiles during embryo implantation. Endocrinology 149, 3274–3278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Burnum, K.E. et al. Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J. Lipid Res. 50, 2290–2298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Simón, C. et al. Increasing uterine receptivity by decreasing estradiol levels during the preimplantation period in high responders with the use of a follicle-stimulating hormone step-down regimen. Fertil. Steril. 70, 234–239 (1998).

    PubMed  Google Scholar 

  132. Moffett, A. & Loke, C. Immunology of placentation in eutherian mammals. Nat. Rev. Immunol. 6, 584–594 (2006).

    CAS  PubMed  Google Scholar 

  133. Munoz-Suano, A., Hamilton, A.B. & Betz, A.G. Gimme shelter: the immune system during pregnancy. Immunol. Rev. 241, 20–38 (2011).

    CAS  PubMed  Google Scholar 

  134. Collins, M.K., Tay, C.S. & Erlebacher, A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J. Clin. Invest. 119, 2062–2073 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Samstein, R.M., Josefowicz, S.Z., Arvey, A., Treuting, P.M. & Rudensky, A.Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Nancy, P. et al. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 336, 1317–1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Gluckman, P.D., Hanson, M.A., Cooper, C. & Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ravelli, G.P., Stein, Z.A. & Susser, M.W. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 295, 349–353 (1976).

    CAS  PubMed  Google Scholar 

  139. Carone, B.R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rosenfeld, C.S. et al. Striking variation in the sex ratio of pups born to mice according to whether maternal diet is high in fat or carbohydrate. Proc. Natl. Acad. Sci. USA 100, 4628–4632 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Anway, M.D., Cupp, A.S., Uzumcu, M. & Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    CAS  PubMed  Google Scholar 

  142. Chakrabarty, A. et al. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc. Natl. Acad. Sci. USA 104, 15144–15149 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hu, S.J. et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J. Biol. Chem. 283, 23473–23484 (2008).

    CAS  PubMed  Google Scholar 

  144. Renthal, N.E. et al. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc. Natl. Acad. Sci. USA 107, 20828–20833 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lynch, V.J., May, G. & Wagner, G.P. Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature 480, 383–386 (2011).

    CAS  PubMed  Google Scholar 

  146. Lynch, V.J., Leclerc, R.D., May, G. & Wagner, G.P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    CAS  PubMed  Google Scholar 

  147. Lubahn, D.B. et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 90, 11162–11166 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Lydon, J.P. et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9, 2266–2278 (1995).

    CAS  PubMed  Google Scholar 

  149. Mulac-Jericevic, B., Mullinax, R.A., DeMayo, F.J., Lydon, J.P. & Conneely, O.M. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 289, 1751–1754 (2000).

    CAS  PubMed  Google Scholar 

  150. Thomas, K., De Hertogh, R., Pizarro, M., Van Exter, C. & Ferin, J. Plasma LH-HCG, 17 -estradiol, estrone and progesterone monitoring around ovulation and subsequent nidation. Int. J. Fertil. 18, 65–73 (1973).

    CAS  PubMed  Google Scholar 

  151. Ghosh, D., De, P. & Sengupta, J. Luteal phase ovarian oestrogen is not essential for implantation and maintenance of pregnancy from surrogate embryo transfer in the rhesus monkey. Hum. Reprod. 9, 629–637 (1994).

    CAS  PubMed  Google Scholar 

  152. Smitz, J. et al. A prospective randomized study on oestradiol valerate supplementation in addition to intravaginal micronized progesterone in buserelin and HMG induced superovulation. Hum. Reprod. 8, 40–45 (1993).

    CAS  PubMed  Google Scholar 

  153. Rao, A.J. et al. Establishment of the need for oestrogen during implantation in non-human primates. Reprod. Biomed. Online 14, 563–571 (2007).

    CAS  PubMed  Google Scholar 

  154. McLaren, A. A study of balstocysts during delay and subsequent implantation in lactating mice. J. Endocrinol. 42, 453–463 (1968).

    CAS  PubMed  Google Scholar 

  155. Yoshinaga, K. & Adams, C.E. Delayed implantation in the spayed, progesterone treated adult mouse. J. Reprod. Fertil. 12, 593–595 (1966).

    CAS  PubMed  Google Scholar 

  156. Lee, J.E. et al. Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152, 2067–2075 (2011).

    CAS  PubMed  Google Scholar 

  157. Lopes, F.L., Desmarais, J.A. & Murphy, B.D. Embryonic diapause and its regulation. Reproduction 128, 669–678 (2004).

    CAS  PubMed  Google Scholar 

  158. Renfree, M.B. & Shaw, G. Diapause. Annu. Rev. Physiol. 62, 353–375 (2000).

    CAS  PubMed  Google Scholar 

  159. Hess, A.P., Nayak, N.R. & Giudice, L.C. Oviduct and endometrium: cyclic changes in the primate oviduct and endometrium. in. Knobil and Neill's Physiology of Reproduction, Vol. 1 (ed. Neill, J.D.) 337–381 (Elsevier Academic Press, 2006).

  160. Schlafke, S. & Enders, A.C. Cellular basis of interaction between trophoblast and uterus at implantation. Biol. Reprod. 12, 41–65 (1975).

    CAS  PubMed  Google Scholar 

  161. World Health Organization. Born Too Soon: The Global Action Report on Preterm Birth. (World Health Organization, Geneva, 2012).

  162. Roizen, J.D., Asada, M., Tong, M., Tai, H.H. & Muglia, L.J. Preterm birth without progesterone withdrawal in 15-hydroxyprostaglandin dehydrogenase hypomorphic mice. Mol. Endocrinol. 22, 105–112 (2008).

    CAS  PubMed  Google Scholar 

  163. Park, C.B., DeMayo, F.J., Lydon, J.P. & Dufort, D. NODAL in the uterus is necessary for proper placental development and maintenance of pregnancy. Biol. Reprod. 86, 194 (2012).

    PubMed  PubMed Central  Google Scholar 

  164. Hamilton, S. et al. Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor. Biol. Reprod. 86, 39 (2011).

    Google Scholar 

  165. Wang, H. & Hirsch, E. Bacterially-induced preterm labor and regulation of prostaglandin-metabolizing enzyme expression in mice: the role of Toll-like receptor 4. Biol. Reprod. 69, 1957–1963 (2003).

    CAS  PubMed  Google Scholar 

  166. Döring, B. et al. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J. Cell Sci. 119, 1715–1722 (2006).

    PubMed  Google Scholar 

  167. Fonseca, E.B., Celik, E., Parra, M., Singh, M. & Nicolaides, K.H. Progesterone and the risk of preterm birth among women with a short cervix. N. Engl. J. Med. 357, 462–469 (2007).

    CAS  PubMed  Google Scholar 

  168. Meis, P.J. et al. Prevention of recurrent preterm delivery by 17 α-hydroxyprogesterone caproate. N. Engl. J. Med. 348, 2379–2385 (2003).

    CAS  PubMed  Google Scholar 

  169. Groom, K.M., Shennan, A.H., Jones, B.A., Seed, P. & Bennett, P.R. TOCOX–a randomised, double-blind, placebo-controlled trial of rofecoxib (a COX-2-specific prostaglandin inhibitor) for the prevention of preterm delivery in women at high risk. BJOG 112, 725–730 (2005).

    CAS  PubMed  Google Scholar 

  170. Kawagoe, J. et al. Nuclear receptor coactivator-6 attenuates uterine estrogen sensitivity to permit embryo implantation. Dev. Cell 23, 858–865 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We regret that space limitations precluded us from citing many relevant references. We thank K. Yoshinaga and A. Erlebacher for helpful discussions. Work embodied in this article from S.K.D.'s group was supported in part by US National Institutes of Health (NIH) grants (HD12304, HD068524 and DA06668), the March of Dimes, and the Grand Challenges Explorations Initiative through the Bill & Melinda Gates Foundation. J.C. is supported by an NIH National Research Service Award Fellowship (F30AG040858) and the University of Cincinnati Medical Scientist Training Program (T32 GM063483), and X.S. is supported by a Lalor Foundation Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhansu K Dey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, J., Sun, X. & Dey, S. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18, 1754–1767 (2012). https://doi.org/10.1038/nm.3012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing