Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis

Abstract

Focal segmental glomerulosclerosis (FSGS) is a cause of proteinuric kidney disease, compromising both native and transplanted kidneys. Treatment is limited because of a complex pathogenesis, including unknown serum factors. Here we report that serum soluble urokinase receptor (suPAR) is elevated in two-thirds of subjects with primary FSGS, but not in people with other glomerular diseases. We further find that a higher concentration of suPAR before transplantation underlies an increased risk for recurrence of FSGS after transplantation. Using three mouse models, we explore the effects of suPAR on kidney function and morphology. We show that circulating suPAR activates podocyte β3 integrin in both native and grafted kidneys, causing foot process effacement, proteinuria and FSGS-like glomerulopathy. Our findings suggest that the renal disease only develops when suPAR sufficiently activates podocyte β3 integrin. Thus, the disease can be abrogated by lowering serum suPAR concentrations through plasmapheresis, or by interfering with the suPAR–β3 integrin interaction through antibodies and small molecules targeting either uPAR or β3 integrin. Our study identifies serum suPAR as a circulating factor that may cause FSGS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: suPAR measurement in the serum of subjects with glomerular disease.
Figure 2: suPAR binds to and activates β3 integrin on podocytes.
Figure 3: suPAR serum concentrations and podocyte β3 integrin activity determine treatment response to plasmapheresis in recurrent FSGS.
Figure 4: suPAR activates β3 integrin and causes foot process effacement in Plaur−/− mouse kidneys and albuminuria in Plaur−/− mice.
Figure 5: Sustained overexpression of suPAR in the blood of wild-type mice leads to an FSGS-like glomerulopathy.
Figure 6: Administration of blocking antibody to uPAR ameliorates suPAR-caused kidney damage.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kitiyakara, C., Eggers, P. & Kopp, J.B. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am. J. Kidney Dis. 44, 815–825 (2004).

    Article  Google Scholar 

  2. Baum, M.A. Outcomes after renal transplantation for FSGS in children. Pediatr. Transplant. 8, 329–333 (2004).

    Article  Google Scholar 

  3. Senggutuvan, P. et al. Recurrence of focal segmental glomerulosclerosis in transplanted kidneys: analysis of incidence and risk factors in 59 allografts. Pediatr. Nephrol. 4, 21–28 (1990).

    Article  CAS  Google Scholar 

  4. Hickson, L.J. et al. Kidney transplantation for primary focal segmental glomerulosclerosis: outcomes and response to therapy for recurrence. Transplantation 87, 1232–1239 (2009).

    Article  Google Scholar 

  5. Ponticelli, C. & Glassock, R.J. Post-transplant recurrence of primary glomerulonephritis. Clin. J. Am. Soc. Nephrol. 5, 2363–2372 (2010).

    Article  Google Scholar 

  6. Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med. 354, 1387–1401 (2006).

    Article  CAS  Google Scholar 

  7. Mathieson, P.W. Proteinuria and immunity—an overstated relationship? N. Engl. J. Med. 359, 2492–2494 (2008).

    Article  CAS  Google Scholar 

  8. Savin, V.J. et al. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl. Res. 151, 288–292 (2008).

    Article  CAS  Google Scholar 

  9. Hoyer, J.R. et al. Recurrence of idiopathic nephrotic syndrome after renal transplantation. J. Am. Soc. Nephrol. 12, 1994–2002 (2001).

    CAS  PubMed  Google Scholar 

  10. Artero, M.L. et al. Plasmapheresis reduces proteinuria and serum capacity to injure glomeruli in patients with recurrent focal glomerulosclerosis. Am. J. Kidney Dis. 23, 574–581 (1994).

    Article  CAS  Google Scholar 

  11. Haas, M. et al. Plasma immunadsorption treatment in patients with primary focal and segmental glomerulosclerosis. Nephrol. Dial. Transplant. 13, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  12. Kemper, M.J., Wolf, G. & Muller-Wiefel, D.E. Transmission of glomerular permeability factor from a mother to her child. N. Engl. J. Med. 344, 386–387 (2001).

    Article  CAS  Google Scholar 

  13. Glassock, R.J. Circulating permeability factors in the nephrotic syndrome: A fresh look at an old problem. J. Am. Soc. Nephrol. 14, 541–543 (2003).

    Article  Google Scholar 

  14. Savin, V.J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 334, 878–883 (1996).

    Article  CAS  Google Scholar 

  15. Sharma, M., Sharma, R., McCarthy, E.T. & Savin, V.J. “The FSGS factor”: enrichment and in vivo effect of activity from focal segmental glomerulosclerosis plasma. J. Am. Soc. Nephrol. 10, 552–561 (1999).

    CAS  PubMed  Google Scholar 

  16. Bruneau, S. et al. Potential role of soluble ST2 protein in idiopathic nephrotic syndrome recurrence following kidney transplantation. Am. J. Kidney Dis. 54, 522–532 (2009).

    Article  CAS  Google Scholar 

  17. McCarthy, E.T., Sharma, M. & Savin, V.J. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 5, 2115–2121 (2010).

    Article  Google Scholar 

  18. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  Google Scholar 

  19. Blasi, F. & Carmeliet, P. uPAR: A versatile signaling orchestrator. Nat. Rev. Mol. Cell Biol. 3, 932–943 (2002).

    Article  CAS  Google Scholar 

  20. Smith, H.W. & Marshall, C.J. Regulation of cell signaling by uPAR. Nat. Rev. Mol. Cell Biol. 11, 23–36 (2010).

    Article  CAS  Google Scholar 

  21. Sier, C.F. et al. The level of urokinase-type plasminogen activator receptor is increased in the serum of ovarian cancer patients. Cancer Res. 58, 1843–1849 (1998).

    CAS  PubMed  Google Scholar 

  22. Sidenius, N. et al. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood 96, 4091–4095 (2000).

    CAS  PubMed  Google Scholar 

  23. Young, B.C., Levine, R.J. & Karumanchi, S.A. Pathogenesis of preeclampsia. Annu. Rev. Pathol. 5, 173–192 (2010).

    Article  CAS  Google Scholar 

  24. Ploug, M. & Ellis, V. Structure-function relationship in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom a-neurotoxins. FEBS Lett. 349, 163–168 (1994).

    Article  CAS  Google Scholar 

  25. Kristensen, P., Eriksen, J., Blasi, F. & Dano, K. Two alternatively spliced mouse urokinase receptor mRNAs with different histological localization in the gastrointestinal tract. J. Cell Biol. 115, 1763–1771 (1991).

    Article  CAS  Google Scholar 

  26. Hada, Y. et al. Selective purification and characterization of adiponectin multimer species from human plasma. Biochem. Biophys. Res. Commun. 356, 487–493 (2007).

    Article  CAS  Google Scholar 

  27. D'Alessio, S. & Blasi, F. The urokinase receptor as an entertainer of signal transduction. Front. Biosci. 14, 4575–4587 (2009).

    Article  CAS  Google Scholar 

  28. Selleri, C. et al. In vivo activity of the cleaved form of soluble urokinase receptor: a new hematopoietic stem/progenitor cell mobilizer. Cancer Res. 66, 10885–10890 (2006).

    Article  CAS  Google Scholar 

  29. Pampori, N. et al. Mechanisms and consequences of affinity modulation of integrin αVβ3 detected with a novel patch-engineered monovalent ligand. J. Biol. Chem. 274, 21609–21616 (1999).

    Article  CAS  Google Scholar 

  30. Honda, S. et al. Topography of ligand-induced binding sites, including a novel cation-sensitive epitope (AP5) at the amino terminus, of the human integrin beta 3 subunit. J. Biol. Chem. 270, 11947–11954 (1995).

    Article  CAS  Google Scholar 

  31. Saleem, M.A. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 13, 630–638 (2002).

    CAS  PubMed  Google Scholar 

  32. Zaidel-Bar, R., Ballestrem, C., Kam, Z. & Geiger, B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116, 4605–4613 (2003).

    Article  CAS  Google Scholar 

  33. Mundel, P. et al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J. Cell Biol. 139, 193–204 (1997).

    Article  CAS  Google Scholar 

  34. Ghiggeri, G.M., Carraro, M. & Vincenti, F. Recurrent focal segmental glomerulosclerosis in the era of genetics of podocyte proteins: theory and therapy. Nephrol. Dial. Transplant. 19, 1036–1040 (2004).

    Article  Google Scholar 

  35. Dekkers, P.E., ten Hove, T., te Velde, A.A., van Deventer, S.J. & van Der Poll, T. Upregulation of monocyte urokinase plasminogen activator receptor during human endotoxemia. Infect. Immun. 68, 2156–2160 (2000).

    Article  CAS  Google Scholar 

  36. Crowley, S.D. et al. Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis. J. Clin. Invest. 119, 943–953 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoyer, J.R. et al. Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet 2, 343–348 (1972).

    Article  CAS  Google Scholar 

  38. Gohh, R.Y. et al. Preemptive plasmapheresis and recurrence of FSGS in high-risk renal transplant recipients. Am. J. Transplant. 5, 2907–2912 (2005).

    Article  CAS  Google Scholar 

  39. Beck, L.H. Jr. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 36, 11–21 (2009).

    Article  Google Scholar 

  40. Clement, L.C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

    Article  CAS  Google Scholar 

  41. Zhang, S.Y. et al. c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci. Signal. 18, ra39 (2010).

    Google Scholar 

  42. Einecke, G. et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J. Clin. Invest. 120, 1862–1872 (2010).

    Article  CAS  Google Scholar 

  43. Vijayan, K.V., Goldschmidt-Clermont, P.J., Roos, C. & Bray, P.F. The PIA2 polymorphism of integrin β3 enhances outside-in signaling and adhesive functions. J. Clin. Invest. 105, 793–802 (2000).

    Article  CAS  Google Scholar 

  44. Salido, E. et al. The polymorphism of the platelet glycoprotein IIIA gene as a risk factor for acute renal allograft rejection. J. Am. Soc. Nephrol. 10, 2599–2605 (1999).

    CAS  PubMed  Google Scholar 

  45. Chiras, T. et al. Platelet GPIIIa polymorphism HPA-1 (PLA1/2) is associated with hypertension as the primary cause for end-stage renal disease in hemodialysis patients from Greece. In Vivo 23, 177–181 (2009).

    CAS  PubMed  Google Scholar 

  46. Marszal, J. & Saleem, M.A. The bioactivity of plasma factors in focal segmental glomerulosclerosis. Nephron Exp. Nephrol. 104, e1–e5 (2006).

    Article  Google Scholar 

  47. Tjwa, M. et al. Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells. J. Clin. Invest. 119, 1008–1018 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Sidenius (Foundation FIRC Institute of Molecular Oncology, Italy) for help with the suPAR assay in mouse samples. We are grateful to L.H. Beck, Jr. and D. Salant (Boston University Medical Center) for providing the membranous nephropathy patient cohort. We thank S. Hsiesh for help with sample collection. We thank G. Høyer-Hansen (the Finsen Laboratory, Denmark) for additional suPAR assays and discussions. The authors are grateful to P.J. Goldschmidt for helpful scientific discussions regarding the manuscript and to M.J. Tracy for critical reading of the manuscript. This work was supported in part by the US National Institutes of Health (grants DK073495 and DK089394 to J.R., DK-82636 to A.F., DK070011 to G.B.), the Halpin Foundation–American Society of Nephrology Research Grant (to C.W.), a grant from the American Diabetes Association (7-09-JF-23 to A.F.), and a grant from the Diabetes Research Institute Foundation (to A.F.). The authors also wish to acknowledge the generous support of the Katz Family Fund.

Author information

Authors and Affiliations

Authors

Contributions

J.R. conceived the study. J.R. and C.W. designed the experiments, coordinated the study, analyzed the data and wrote the manuscript. C.W., S.E.H., J.L., D.M., Q.Z., B.N., P.D., V.G. performed the experiments. A.F., N.G., G.B., J.S., S.A.K., H.-K.Y., M.Saleem, A.C., E.S., A.T., M.Salifu, M.M.S., F.S., C.M., V.S., M.Z., D.R., M.P.R., P.R., J.R. contributed to clinical samples and clinical information. M.P.R. and P.R. provided pathology service.

Corresponding author

Correspondence to Jochen Reiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–3 and Supplementary Methods (PDF 668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, C., El Hindi, S., Li, J. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17, 952–960 (2011). https://doi.org/10.1038/nm.2411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2411

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research