Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia

Abstract

Chuvash polycythemia is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the VHL (von Hippel-Lindau) gene, whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark abnormalities of Chuvash polycythemia, such as hypersensitivity to erythropoietin, are unclear. Here we show that VHL directly binds suppressor of cytokine signaling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated JAK2 (pJAK2) for ubiquitin-mediated destruction. In contrast, Chuvash polycythemia–associated VHL mutants have altered affinity for SOCS1 and do not engage with and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reversed the disease phenotype in VhlR200W/R200W knock-in mice, an experimental model that recapitulates human Chuvash polycythemia. These results show that VHL is a SOCS1-cooperative negative regulator of JAK2 and provide biochemical and preclinical support for JAK2-targeted therapy in individuals with Chuvash polycythemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CP-VHL shows altered binding to ECV components and JAK2.
Figure 2: VHL promotes ubiquitin-mediated destruction of pJAK2.
Figure 3: VHL binds to and cooperates with SOCS1 to negatively regulate pJAK2.
Figure 4: CP-VHL mutants are defective in pJAK2 degradation and pharmacologic JAK2 inhibition attenuates VHL-dependent BaF3-EPOR colony formation.
Figure 5: TG101209 treatment rescues polycythemia features in VhlR/R mice.
Figure 6: The SOCS groove and a revised molecular model of Chuvash polycythemia.

Similar content being viewed by others

References

  1. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  Google Scholar 

  2. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  Google Scholar 

  3. Maxwell, P.H. et al. The von Hippel-Lindau gene product is necessary for oxygen dependent proteolysis of hypoxia-inducible factor α subunits. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  4. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  Google Scholar 

  5. Roberts, A.M. & Ohh, M. Beyond the hypoxia-inducible factor-centric tumour suppressor model of von Hippel-Lindau. Curr. Opin. Oncol. 20, 83–89 (2008).

    Article  CAS  Google Scholar 

  6. Kim, W.Y. & Kaelin, W.G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    Article  CAS  Google Scholar 

  7. Stebbins, C.E., Kaelin, W.G. & Pavletich, N.P. Structure of the VHL-elonginC-elonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  CAS  Google Scholar 

  8. Min, J.H. et al. Structure of an HIF-1α–pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    Article  CAS  Google Scholar 

  9. Clifford, S.C. et al. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    Article  CAS  Google Scholar 

  10. Kondo, K., Kim, W.Y., Lechpammer, M. & Kaelin, W.G. Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  Google Scholar 

  11. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W.G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  Google Scholar 

  12. Hoffman, M.A. et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001).

    Article  CAS  Google Scholar 

  13. Ang, S.O. et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat. Genet. 32, 614–621 (2002).

    Article  CAS  Google Scholar 

  14. Perrotta, S. et al. Von Hippel-Lindau–dependent polycythemia is endemic on the island of Ischia: identification of a novel cluster. Blood 107, 514–519 (2006).

    Article  CAS  Google Scholar 

  15. Pastore, Y. et al. Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. Am. J. Hum. Genet. 73, 412–419 (2003).

    Article  CAS  Google Scholar 

  16. Pastore, Y.D. et al. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood 101, 1591–1595 (2003).

    Article  CAS  Google Scholar 

  17. Bento, M.C. et al. Congenital polycythemia with homozygous and heterozygous mutations of von Hippel-Lindau gene: five new Caucasian patients. Haematologica 90, 128–129 (2005).

    CAS  PubMed  Google Scholar 

  18. Hickey, M.M., Lam, J.C., Bezman, N.A., Rathmell, W.K. & Simon, M.C. von Hippel-Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2α signaling and splenic erythropoiesis. J. Clin. Invest. 117, 3879–3889 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van Rooijen, E. et al. Zebrafish mutants in the von Hippel-Lindau (VHL) tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood 113, 6449–6460 (2009).

    Article  CAS  Google Scholar 

  20. Messinezy, M. & Pearson, T.C. The classification and diagnostic criteria of the erythrocytoses (polycythaemias). Clin. Lab. Haematol. 21, 309–316 (1999).

    Article  CAS  Google Scholar 

  21. Percy, M.J. et al. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 110, 2193–2196 (2007).

    Article  CAS  Google Scholar 

  22. Percy, M.J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).

    Article  CAS  Google Scholar 

  23. Percy, M.J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl. Acad. Sci. USA 103, 654–659 (2006).

    Article  CAS  Google Scholar 

  24. Kim, W.Y. et al. Failure to prolyl hydroxylate hypoxia-inducible factor α phenocopies VHL inactivation in vivo. EMBO J. 25, 4650–4662 (2006).

    Article  CAS  Google Scholar 

  25. Baxter, E.J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article  CAS  Google Scholar 

  26. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    Article  CAS  Google Scholar 

  27. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  CAS  Google Scholar 

  28. Levine, R.L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article  CAS  Google Scholar 

  29. Zhao, R. et al. Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem. 280, 22788–22792 (2005).

    Article  CAS  Google Scholar 

  30. Watowich, S.S. et al. Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu. Rev. Cell Dev. Biol. 12, 91–128 (1996).

    Article  CAS  Google Scholar 

  31. Constantinescu, S.N., Girardot, M. & Pecquet, C. Mining for JAK-STAT mutations in cancer. Trends Biochem. Sci. 33, 122–131 (2008).

    Article  CAS  Google Scholar 

  32. Ungureanu, D., Saharinen, P., Junttila, I., Hilton, D.J. & Silvennoinen, O. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol. Cell. Biol. 22, 3316–3326 (2002).

    Article  CAS  Google Scholar 

  33. Kamizono, S. et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J. Biol. Chem. 276, 12530–12538 (2001).

    Article  CAS  Google Scholar 

  34. Sarna, M.K. et al. Differential regulation of SOCS genes in normal and transformed erythroid cells. Oncogene 22, 3221–3230 (2003).

    Article  CAS  Google Scholar 

  35. Wernig, G. et al. Expression of Jak2V617F causes a polycythemia vera–like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107, 4274–4281 (2006).

    Article  CAS  Google Scholar 

  36. Lacout, C. et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108, 1652–1660 (2006).

    Article  CAS  Google Scholar 

  37. Bumm, T.G. et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res. 66, 11156–11165 (2006).

    Article  CAS  Google Scholar 

  38. Tiedt, R. et al. Ratio of mutant JAK2–V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111, 3931–3940 (2008).

    Article  CAS  Google Scholar 

  39. Teofili, L. et al. Different STAT-3 and STAT-5 phosphorylation discriminates among Ph-negative chronic myeloproliferative diseases and is independent of the V617F JAK-2 mutation. Blood 110, 354–359 (2007).

    Article  CAS  Google Scholar 

  40. Ohh, M. et al. Synthetic peptides define critical contacts between elongin C, elongin B and the von Hippel-Lindau protein. J. Clin. Invest. 104, 1583–1591 (1999).

    Article  CAS  Google Scholar 

  41. Ohh, M. et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1, 959–968 (1998).

    Article  CAS  Google Scholar 

  42. Bellucci, S. & Michiels, J.J. The role of JAK2 V617F mutation, spontaneous erythropoiesis and megakaryocytopoiesis, hypersensitive platelets, activated leukocytes and endothelial cells in the etiology of thrombotic manifestations in polycythemia vera and essential thrombocythemia. Semin. Thromb. Hemost. 32, 381–398 (2006).

    Article  CAS  Google Scholar 

  43. Lonergan, K.M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 18, 732–741 (1998).

    Article  CAS  Google Scholar 

  44. Lenburg, M.E. et al. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer 3, 31 (2003).

    Article  Google Scholar 

  45. Chung, J., Roberts, A.M., Chow, J., Coady-Osberg, N. & Ohh, M. Homotypic association between tumour-associated VHL proteins leads to the restoration of HIF pathway. Oncogene 25, 3079–3083 (2006).

    Article  CAS  Google Scholar 

  46. Dixon, C. et al. Overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p inhibits ubiquitin ligase activities of their SCF complexes. Eukaryot. Cell 2, 123–133 (2003).

    Article  CAS  Google Scholar 

  47. Kominami, K., Ochotorena, I. & Toda, T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin-1-F-box) ubiquitin ligase. Genes Cells 3, 721–735 (1998).

    Article  CAS  Google Scholar 

  48. Suzuki, H. et al. Homodimer of two F-box proteins βTrCP1 or βTrCP2 binds to IκBα for signal-dependent ubiquitination. J. Biol. Chem. 275, 2877–2884 (2000).

    Article  CAS  Google Scholar 

  49. Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    Article  CAS  Google Scholar 

  50. Song, M.M. & Shuai, K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35056–35062 (1998).

    Article  CAS  Google Scholar 

  51. Kamura, T. et al. Muf1, a novel elongin BC–interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase. J. Biol. Chem. 276, 29748–29753 (2001).

    Article  CAS  Google Scholar 

  52. Rui, L., Yuan, M., Frantz, D., Shoelson, S. & White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 277, 42394–42398 (2002).

    Article  CAS  Google Scholar 

  53. Pardanani, A. et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21, 1658–1668 (2007).

    Article  CAS  Google Scholar 

  54. Hon, W.C. et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  Google Scholar 

  55. Shibata, J. et al. Hemostasis and coagulation at a hematocrit level of 0.85: functional consequences of erythrocytosis. Blood 101, 4416–4422 (2003).

    Article  CAS  Google Scholar 

  56. Cario, H. et al. Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene and VHL-haplotype analysis in patients with presumable congenital erythrocytosis. Haematologica 90, 19–24 (2005).

    CAS  PubMed  Google Scholar 

  57. Rathmell, W.K. et al. In vitro and in vivo models analyzing von Hippel-Lindau disease-specific mutations. Cancer Res. 64, 8595–8603 (2004).

    Article  CAS  Google Scholar 

  58. Stickle, N.H. et al. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol. Cell. Biol. 24, 3251–3261 (2004).

    Article  CAS  Google Scholar 

  59. Le, Y. et al. FAK silencing inhibits leukemogenesis in BCR/ABL-transformed hematopoietic cells. Am. J. Hematol. 84, 273–278 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Canadian Cancer Society (020110 to M.O. and 018054 to M.S.I.), US National Institutes of Health R01 CA142794 (W.Y.K.), U54 CA151652 (W.Y.K.) and US Department of Defense grants PC094631 and W81XWH-08-1-0064 (W.Y.K). Plasmid encoding HA-SOCS1 was provided by R. Rottapel (Ontario Cancer Institute). Lentiviral reagents pMDG1.vsvg and psPAX2 were provided by L. Penn (Ontario Cancer Institute). JAK2 inhibitor TG101209 was provided by TargeGen. We thank the University North Carolina Animal Studies Core Facility and Mouse Phase 1 Unit for their assistance in the animal study. W.Y.K. is a Damon Runyon Merck clinical investigator. M.O. is a Canada Research Chair in molecular oncology.

Author information

Authors and Affiliations

Authors

Contributions

R.C.R. designed and carried out biochemical and mouse experiments. R.I.S. designed and carried out biochemical experiments. B.Z. carried out the mouse experiments. P.H., S.B., S.S.S., S.N.G., O.R., V.W.K.C. and L.M.B. carried out and assisted with the biochemical experiments. S.A.H., T.D.R. and M.M.H. assisted with the mouse experiments. D.L.B., D.A.C. and M.C.S. provided the reagents associated with the mouse experiments. W.Y.K. designed the mouse experiments. M.S.I. conceptualized the model and designed the experiments. M.O. conceptualized the model, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Michael Ohh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 981 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, R., Sufan, R., Zhou, B. et al. Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia. Nat Med 17, 845–853 (2011). https://doi.org/10.1038/nm.2370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing