Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lrp5 functions in bone to regulate bone mass

Abstract

The human skeleton is affected by mutations in low-density lipoprotein receptor-related protein 5 (LRP5). To understand how LRP5 influences bone properties, we generated mice with osteocyte-specific expression of inducible Lrp5 mutations that cause high and low bone mass phenotypes in humans. We found that bone properties in these mice were comparable to bone properties in mice with inherited mutations. We also induced an Lrp5 mutation in cells that form the appendicular skeleton but not in cells that form the axial skeleton; we observed that bone properties were altered in the limb but not in the spine. These data indicate that Lrp5 signaling functions locally, and they suggest that increasing LRP5 signaling in mature bone cells may be a strategy for treating human disorders associated with low bone mass, such as osteoporosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and characterization of HBM-causing Lrp5 knock-in mice.
Figure 2: Effect of activating Lrp5 NeoR-containing HBM alleles.
Figure 3: Generation and characterization of mice with a conditional knockout allele of Lrp5.
Figure 4: Effect of Lrp5 genotype on 5HT concentration and on Tph1 expression.
Figure 5: Bone mass in WT and Tph1−/− mice.
Figure 6: Bone mass after pharmacologic inhibition of Tph1 activity.

Similar content being viewed by others

References

  1. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  Google Scholar 

  2. Little, R.D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    Article  CAS  Google Scholar 

  3. Boyden, L.M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    Article  CAS  Google Scholar 

  4. Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).

    Article  CAS  Google Scholar 

  5. Brunkow, M.E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    Article  CAS  Google Scholar 

  6. Morello, R. et al. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006).

    Article  CAS  Google Scholar 

  7. Ai, M., Heeger, S., Bartels, C.F. & Schelling, D.K. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am. J. Hum. Genet. 77, 741–753 (2005).

    Article  CAS  Google Scholar 

  8. Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet. 72, 763–771 (2003).

    Article  CAS  Google Scholar 

  9. Ai, M., Holmen, S.L., Van Hul, W., Williams, B.O. & Warman, M.L. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol. Cell. Biol. 25, 4946–4955 (2005).

    Article  CAS  Google Scholar 

  10. Holmen, S.L. et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J. Bone Miner. Res. 19, 2033–2040 (2004).

    Article  CAS  Google Scholar 

  11. Semenov, M.V. & He, X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J. Biol. Chem. 281, 38276–38284 (2006).

    Article  CAS  Google Scholar 

  12. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002).

    Article  CAS  Google Scholar 

  13. Kokubu, C. et al. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development 131, 5469–5480 (2004).

    Article  CAS  Google Scholar 

  14. Nakanishi, R. et al. Secreted frizzled-related protein 4 is a negative regulator of peak BMD in SAMP6 mice. J. Bone Miner. Res. 21, 1713–1721 (2006).

    Article  CAS  Google Scholar 

  15. Li, X. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860–869 (2008).

    Article  Google Scholar 

  16. Morvan, F. et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934–945 (2006).

    Article  CAS  Google Scholar 

  17. Babij, P. et al. High bone mass in mice expressing a mutant LRP5 gene. J. Bone Miner. Res. 18, 960–974 (2003).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell. Biol. 24, 4677–4684 (2004).

    Article  CAS  Google Scholar 

  19. Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 100, 3299–3304 (2003).

    Article  CAS  Google Scholar 

  20. Jho, E.H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  Google Scholar 

  21. Lu, Y. et al. DMP1-targeted Cre expression in odontoblasts and osteocytes. J. Dent. Res. 86, 320–325 (2007).

    Article  CAS  Google Scholar 

  22. Yadav, V.K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    Article  CAS  Google Scholar 

  23. Liu, Q. et al. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J. Pharmacol. Exp. Ther. 325, 47–55 (2008).

    Article  CAS  Google Scholar 

  24. Walther, D.J. et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76 (2003).

    Article  CAS  Google Scholar 

  25. Alenina, N. et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. USA 106, 10332–10337 (2009).

    Article  CAS  Google Scholar 

  26. Savelieva, K.V. et al. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE 3, e3301 (2008).

    Article  Google Scholar 

  27. Madison, B.B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    Article  CAS  Google Scholar 

  28. Logan, M. et al. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).

    Article  CAS  Google Scholar 

  29. Iwaniec, U.T. et al. PTH stimulates bone formation in mice deficient in Lrp5. J. Bone Miner. Res. 22, 394–402 (2007).

    Article  CAS  Google Scholar 

  30. Long, F. When the gut talks to bone. Cell 135, 795–796 (2008).

    Article  CAS  Google Scholar 

  31. Rosen, C.J. Serotonin rising—the bone, brain, bowel connection. N. Engl. J. Med. 360, 957–959 (2009).

    Article  CAS  Google Scholar 

  32. Yadav, V.K. et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med. 16, 308–312 (2010).

    Article  CAS  Google Scholar 

  33. Balemans, W. et al. The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif. Tissue Int. 82, 445–453 (2008).

    Article  CAS  Google Scholar 

  34. Ellies, D.L. et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res. 21, 1738–1749 (2006).

    Article  CAS  Google Scholar 

  35. MacDonald, B.T. et al. Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41, 331–339 (2007).

    Article  CAS  Google Scholar 

  36. Robling, A.G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008).

    Article  CAS  Google Scholar 

  37. Bonewald, L.F. & Johnson, M.L. Osteocytes, mechanosensing and Wnt signaling. Bone 42, 606–615 (2008).

    Article  CAS  Google Scholar 

  38. Robinson, J.A. et al. Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. J. Biol. Chem. 281, 31720–31728 (2006).

    Article  CAS  Google Scholar 

  39. Sawakami, K. et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem. 281, 23698–23711 (2006).

    Article  CAS  Google Scholar 

  40. Dong, Y. et al. Molecular cloning and characterization of LR3, a novel LDL receptor family protein with mitogenic activity. Biochem. Biophys. Res. Commun. 251, 784–790 (1998).

    Article  CAS  Google Scholar 

  41. Fuccillo, M., Joyner, A.L. & Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 772–783 (2006).

    Article  CAS  Google Scholar 

  42. Zhong, W. & Chia, W. Neurogenesis and asymmetric cell division. Curr. Opin. Neurobiol. 18, 4–11 (2008).

    Article  Google Scholar 

  43. Day, T.F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    Article  CAS  Google Scholar 

  44. Hill, T.P., Spater, D., Taketo, M.M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727–738 (2005).

    Article  CAS  Google Scholar 

  45. Hu, H. et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49–60 (2005).

    Article  CAS  Google Scholar 

  46. Kang, S. et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 282, 14515–14524 (2007).

    Article  CAS  Google Scholar 

  47. Kelly, O.G., Pinson, K.I. & Skarnes, W.C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131, 2803–2815 (2004).

    Article  CAS  Google Scholar 

  48. Dacquin, R., Starbuck, M., Schinke, T. & Karsenty, G. Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev. Dyn. 224, 245–251 (2002).

    Article  CAS  Google Scholar 

  49. Ingebretsen, O.C., Bakken, A.M. & Farstad, M. Liquid chromatography of serotonin and adenine nucleotides in blood platelets, illustrated by evaluation of functional integrity of platelet preparations. Clin. Chem. 31, 695–698 (1985).

    CAS  PubMed  Google Scholar 

  50. Anderson, G.M., Stevenson, J.M. & Cohen, D.J. Steady-state model for plasma free and platelet serotonin in man. Life Sci. 41, 1777–1785 (1987).

    Article  CAS  Google Scholar 

  51. Wolff, J. The Law of Bone Remodeling (Springer-Verlag, 1892).

  52. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  Google Scholar 

  53. Farley, F.W., Soriano, P., Steffen, L.S. & Dymecki, S.M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).

    Article  CAS  Google Scholar 

  54. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  55. Clément-Lacroix, P. et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl. Acad. Sci. USA 102, 17406–17411 (2005).

    Article  Google Scholar 

  56. Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  Google Scholar 

  57. Tenner, K., Qadri, F., Bert, B., Voigt, J.P. & Bader, M. The mTPH2 C1473G single nucleotide polymorphism is not responsible for behavioural differences between mouse strains. Neurosci. Lett. 431, 21–25 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for technical support: B. Newby, K. Kurek and E. Boyden for assistance with the HBM mouse studies; G. Zhou for assistance with histomorphometry; M. Niedecker and E. Kleinschmidt for assistance with radiography; the Case Transgenic and Targeting Facility; K. Sisson and P. Swiatek of the Van Andel Research Institute Mouse Germline Modification Core; B. Eagleson and the staff of the Van Andel Research Institute Vivarium; J. Bardenhagen, J. Greer, S. Jeter-Jones, J. Liu, M.K. Shadoan, D.D. Smith, W. Xiong and A. Yu of Lexicon Pharmaceuticals; and F. Bourgondien, R. Zhang and S. Yeh of Merck Sharp & Dohme Research Laboratories. This work was supported by the following grants: US National Institutes of Health (NIH) grant AR53237 (to A.G.R.); Public Health Service Career Development Award (UL 1RR025761-02) (to P.J.N.); NIH grant (GM74241) and a Leukemia and Lymphoma Society Scholarship (both to X.H.); NIH grant AR053293 and Van Andel Research Institute funds (to B.O.W.). M.L.W. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. created and did studies on the mice with the Lrp5 HBM alleles and measured serum serotonin levels by competitive ELISA. P.J.N. did radiographic imaging and biomechanical testing on the mice with HBM-associated alleles. B.T.M. contributed to the serotonin and Tph1 qRT-PCR measurements in HBM-causing and Lrp5 knockout mice. C.R.Z. did multiple studies using the conditional Lrp5 knockout mice. N.A. studied the Tph1−/− mice, and with S.M. measured whole blood serotonin levels from HBM-causing and Lrp5-knockout mice by HPLC. D.R.R. generated the conditional Lrp5 knockout strain and Z.Z. participated in conditional inactivation of this allele using different Cre transgenes. C.M.J. carried out the Prrx1-Cre experiments. R.B., F.M. and Q.M.Y. organized studies on Lrp5- and Tph -knockout mice, and also organized the mouse pharmacology experiment. H.G. and J.A.G. organized the rat pharmacology experiment. R.A.C., X.H., M.B., D.R.P., Q.L., B.Z., B.O.W., A.G.R. and M.L.W. designed experiments and provided reagents and financial support. M.L.W. prepared the first draft of the manuscript. All co-authors contributed detailed methods and results, and revised and approved the manuscript.

Corresponding author

Correspondence to Matthew L Warman.

Ethics declarations

Competing interests

Employees of Lexicon Pharmaceuticals (R.B., Q.L., F.M., D.R.P., Q.M.Y. and B.Z.) and Merck Sharp & Dohme Research Laboratories (H.G. and J.A.G.) have received compensation in the form of salary and stock options.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–4 and Supplementary Methods (PDF 8953 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Niziolek, P., MacDonald, B. et al. Lrp5 functions in bone to regulate bone mass. Nat Med 17, 684–691 (2011). https://doi.org/10.1038/nm.2388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing