Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity

Abstract

As an approved vaccine adjuvant for use in humans, alum has vast health implications, but, as it is a crystal, questions remain regarding its mechanism. Furthermore, little is known about the target cells, receptors, and signaling pathways engaged by alum. Here we report that, independent of inflammasome and membrane proteins, alum binds dendritic cell (DC) plasma membrane lipids with substantial force. Subsequent lipid sorting activates an abortive phagocytic response that leads to antigen uptake. Such activated DCs, without further association with alum, show high affinity and stable binding with CD4+ T cells via the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function–associated antigen-1 (LFA-1). We propose that alum triggers DC responses by altering membrane lipid structures. This study therefore suggests an unexpected mechanism for how this crystalline structure interacts with the immune system and how the DC plasma membrane may behave as a general sensor for solid structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alum shows affinity for DC surface without inducing phagocytosis.
Figure 2: Alum targets only DCs.
Figure 3: Alum's direct affinity for membrane lipids.
Figure 4: Alum triggers membrane lipid sorting and the activation of the Src-ITAM-Syk-PI3K pathway for DC activation.
Figure 5: Alum-mediated DC binding and activation requires the ITAM-Syk pathway but not Nlrp3-ASC.
Figure 6: DCs following alum contact gain strong adhesion to CD4 T cells.

Similar content being viewed by others

References

  1. Glenny, A.T., Pope, C.G., Waddington, H. & Wallace, V. The antigenic value of toxoid precipitated by potassium alum. Receptors control activation of adaptive immune responses. J. Pathol. Bacteriol. 29, 38–45 (1926).

    Google Scholar 

  2. Parham, P. The Immune System 2nd ed. Ch. 12 (Garland Science, 2004).

  3. Marrack, P., McKee, A.S. & Munks, M.W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287–293 (2009).

    Article  CAS  Google Scholar 

  4. Glenny, A.T., Buttle, G.A.H. & Stevens, M.F. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea-pigs: toxoid precipitated with alum. J. Pathol. Bacteriol. 34, 267–275 (1931).

    Article  CAS  Google Scholar 

  5. Jordan, M.B., Mills, D.M., Kappler, J., Marrack, P. & Cambier, J.C. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304, 1808–1810 (2004).

    Article  CAS  Google Scholar 

  6. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    Article  CAS  Google Scholar 

  7. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  Google Scholar 

  8. Sharp, F.A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. USA 106, 870–875 (2009).

    Article  CAS  Google Scholar 

  9. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  10. Franchi, L. & Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38, 2085–2089 (2008).

    Article  CAS  Google Scholar 

  11. Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).

    Article  CAS  Google Scholar 

  12. McKee, A.S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403–4414 (2009).

    Article  CAS  Google Scholar 

  13. Leonenko, Z., Finot, E. & Amrein, M. Adhesive interaction measured between AFM probe and lung epithelial type II cells. Ultramicroscopy 107, 948–953 (2007).

    Article  CAS  Google Scholar 

  14. Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).

    Article  CAS  Google Scholar 

  15. Harlow, E. & Lane, D. Antibodies—a Laboratory Manual Ch. 5 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988).

  16. Coligan, J.E. Short Protocols in Immunology Ch. 1 (Wiley, 2005).

  17. Goldstein, J. et al. Scanning Electron Microscopy and X-ray Microanalysis Ch. 7 (Springer, 2003).

  18. Garry, V.F., Good, P.F., Manivel, J.C. & Perl, D.P. Investigation of a fatality from nonoccupational aluminum phosphide exposure: measurement of aluminum in tissue and body fluids as a marker of exposure. J. Lab. Clin. Med. 122, 739–747 (1993).

    CAS  PubMed  Google Scholar 

  19. Lanier, L.L., Corliss, B.C., Wu, J., Leong, C. & Phillips, J.H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

    Article  CAS  Google Scholar 

  20. Crowley, M.T. et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J. Exp. Med. 186, 1027–1039 (1997).

    Article  CAS  Google Scholar 

  21. Fitzer-Attas, C.J. et al. Fcγ receptor–mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr and Lyn. J. Exp. Med. 191, 669–682 (2000).

    Article  CAS  Google Scholar 

  22. Jiang, K. et al. Syk regulation of phosphoinositide 3-kinase–dependent NK cell function. J. Immunol. 168, 3155–3164 (2002).

    Article  CAS  Google Scholar 

  23. Dai, R., Chen, R. & Li, H. Cross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle progression and cell death in human hepatocellular carcinoma cells. Int. J. Oncol. 34, 1749–1757 (2009).

    CAS  PubMed  Google Scholar 

  24. Rommel, C. et al. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738–1741 (1999).

    Article  CAS  Google Scholar 

  25. Shiratsuchi, H. & Basson, M.D. Extracellular pressure stimulates macrophage phagocytosis by inhibiting a pathway involving FAK and ERK. Am. J. Physiol. Cell Physiol. 286, C1358–C1366 (2004).

    Article  CAS  Google Scholar 

  26. Kovjazin, R. et al. Ferrocene-induced lymphocyte activation and anti-tumor activity is mediated by redox-sensitive signaling. FASEB J. 17, 467–469 (2003).

    Article  CAS  Google Scholar 

  27. Mathur, R.K., Awasthi, A., Wadhone, P., Ramanamurthy, B. & Saha, B. Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses. Nat. Med. 10, 540–544 (2004).

    Article  CAS  Google Scholar 

  28. Newton, R. et al. The MAP kinase inhibitors, PD098059, UO126 and SB203580, inhibit IL-1β–dependent PGE2 release via mechanistically distinct processes. Br. J. Pharmacol. 130, 1353–1361 (2000).

    Article  CAS  Google Scholar 

  29. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  Google Scholar 

  30. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  31. Greenberg, S. & Grinstein, S. Phagocytosis and innate immunity. Curr. Opin. Immunol. 14, 136–145 (2002).

    Article  CAS  Google Scholar 

  32. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).

    Article  CAS  Google Scholar 

  33. Sun, H., Pollock, K.G. & Brewer, J.M. Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21, 849–855 (2003).

    Article  CAS  Google Scholar 

  34. Rock, K.L. & Shen, L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev. 207, 166–183 (2005).

    Article  CAS  Google Scholar 

  35. Rock, K.L. Exiting the outside world for cross-presentation. Immunity 25, 523–525 (2006).

    Article  CAS  Google Scholar 

  36. Shi, Y., Evans, J.E. & Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  Google Scholar 

  37. Shi, Y., Galusha, S.A. & Rock, K.L. Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J. Immunol. 176, 3905–3908 (2006).

    Article  CAS  Google Scholar 

  38. Kovacsovics-Bankowski, M. & Rock, K.L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995).

    Article  CAS  Google Scholar 

  39. Rimaniol, A.C. et al. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type. Vaccine 22, 3127–3135 (2004).

    Article  CAS  Google Scholar 

  40. Martinon, F. Detection of immune danger signals by NALP3. J. Leukoc. Biol. 83, 507–511 (2008).

    Article  CAS  Google Scholar 

  41. Chen, C.J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 116, 2262–2271 (2006).

    Article  CAS  Google Scholar 

  42. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009).

    Article  CAS  Google Scholar 

  43. Ruland, J. CARD9 signaling in the innate immune response. Ann. NY Acad. Sci. 1143, 35–44 (2008).

    Article  CAS  Google Scholar 

  44. Shio, M.T. et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 5, e1000559 (2009).

    Article  Google Scholar 

  45. Shi, Y., Mucsi, A.D. & Ng, G. Monosodium urate crystals in inflammation and immunity. Immunol. Rev. 233, 203–217 (2010).

    Article  CAS  Google Scholar 

  46. De Gregorio, E., D'Oro, U. & Wack, A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol. 21, 339–345 (2009).

    Article  CAS  Google Scholar 

  47. Kanevets, U., Sharma, K., Dresser, K. & Shi, Y. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J. Immunol. 182, 1912–1918 (2009).

    Article  CAS  Google Scholar 

  48. Richter, R., Mukhopadhyay, A. & Brisson, A. Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 85, 3035–3047 (2003).

    Article  CAS  Google Scholar 

  49. Nollert, P., Kiefer, H. & Jahnig, F. Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. Biophys. J. 69, 1447–1455 (1995).

    Article  CAS  Google Scholar 

  50. Desrosiers, M.D. et al. Adenosine deamination sustains dendritic cell activation in inflammation. J. Immunol. 179, 1884–1892 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Lanier and C. Lowell (University of California–San Francisco) for providing mouse bone marrows; P. Kubes (University of Calgary) for ICAM-1–, LFA-1– and TLR4-knockout mice; K. Rock (University of Massachusetts Medical School), P. Cresswell (Yale University), G. Dranoff (Harvard Medical School) and R. Yates and J. Deans (University of Calgary) for cell lines, L.J. Shen, M. Ho, Y. Yang and P. Santamaria for manuscript review; C. Olson and T. Fung for statistical software and advice; E. Chau for manuscript editing; F. Oskouie for cell culture assistance; and M. Schoel and W.-D. Xiang for SEM and transmission electron microscopy technical assistance. This work was supported by grants from the US National Institutes of Health to Y.S. and equipment donation from JPK instruments to M.W.A.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. designed experiments with input from M.W.A. and wrote the manuscript with assistance from T.L.F. and D.A.M. T.L.F. performed the experiments unless indicated otherwise below. G.N. performed EDS and SEM assays and developed methods for lipid-crystal binding analysis. A.H. and A.D.M. performed CD4-DC binding analysis and EDS and SEM work and contributed to bilayer lipid synthesis. M.D.D. performed antibody induction and cytokine studies with assistance from Y.F. S.M.W., P.Z. and C.C.L. performed aliphatic chain extension on cholesterol and sphingomyelin. M.E.S. and A.V. performed western blotting. E.P. provided Langmuir trough and technical assistance. J.T. and D.A.M. provided inflammasome-deficient mice and technical assistance and consultation. M.W.A. supervised all aspects of work involving AFM.

Corresponding author

Correspondence to Yan Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Methods and Supplementary Data (PDF 1381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flach, T., Ng, G., Hari, A. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 17, 479–487 (2011). https://doi.org/10.1038/nm.2306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing