Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression

Journal name:
Nature Medicine
Volume:
17,
Pages:
320–329
Year published:
DOI:
doi:10.1038/nm.2328
Published online

Abstract

Tumors are like new organs and are made of multiple cell types and components. The tumor competes with the normal microenvironment to overcome antitumorigenic pressures. Before that battle is won, the tumor may exist within the organ unnoticed by the host, referred to as 'occult cancer'. We review how normal tissue homeostasis and architecture inhibit progression of cancer and how changes in the microenvironment can shift the balance of these signals to the procancerous state. We also include a discussion of how this information is being tailored for clinical use.

References

  1. Berenblum, I. Carcinogenesis as a Biological Problem (North-Holland, 1974).
  2. Alberts, B. et al. Molecular Biology of the Cell 4th edn. (Garland Science, New York, 2002).
  3. Folkman, J. & Kalluri, R. Cancer without disease. Nature 427, 787 (2004).
  4. Rich, A.R. On the frequency of occurrence of occult carcinoma of the prostate. J. Urol. 33, 215223 (1935).
  5. Rich, A.R. On the frequency of occurrence of occult carcinoma of the prostrate. 1934. Int. J. Epidemiol. 36, 274277 (2007).
  6. Sakr, W.A., Haas, G.P., Cassin, B.F., Pontes, J.E. & Crissman, J.D. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J. Urol. 150, 379385 (1993).
  7. Nielsen, M., Thomsen, J.L., Primdahl, S., Dyreborg, U. & Andersen, J.A. Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br. J. Cancer 56, 814819 (1987).
  8. Harach, H.R., Franssila, K.O. & Wasenius, V.M. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer 56, 531538 (1985).
  9. Manser, R.L., Dodd, M., Byrnes, G., Irving, L.B. & Campbell, D.A. Incidental lung cancers identified at coronial autopsy: implications for overdiagnosis of lung cancer by screening. Respir. Med. 99, 501507 (2005).
  10. Biernaux, C., Sels, A., Huez, G. & Stryckmans, P. Very low level of major BCR-ABL expression in blood of some healthy individuals. Bone Marrow Transplant. 3, S45S47 (1996).
  11. Hruban, R., Brune, K., Fukushima, N. & Maitra, A. Pancreatic intraepithelial neoplasia. in Pancreatic Cancer (eds. Lowy, A.M., Leach, S.D. and Philip, P.A.) (Springer, New York, New York, 2008).
  12. Bose, S., Deininger, M., Gora-Tybor, J., Goldman, J.M. & Melo, J.V. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92, 33623367 (1998).
  13. Patel, J., Nemoto, T., Rosner, D., Dao, T.L. & Pickren, J.W. Axillary lymph node metastasis from an occult breast cancer. Cancer 47, 29232927 (1981).
  14. Potter, J.D. Morphogens, morphostats, microarchitecture and malignancy. Nat. Rev. Cancer 7, 464474 (2007).
  15. Wessels, N.K. Extracellular materials and tissue interactions. in Tissue Interaction and Development (ed. Benjamin, W.A.) (Benjamin/Cummings Publishing, Menlo Park, California, 1977).
  16. Ashkenas, J., Muschler, J. & Bissell, M. The extracellular matrix in epithelial biology: shared molecules and common themes in distant phyla. Dev. Biol. 180, 433 (1996).
  17. Johnson, M.S., Lu, N., Denessiouk, K., Heino, J. & Gullberg, D. Integrins during evolution: evolutionary trees and model organisms. Biochim. Biophys. Acta 1788, 779789 (2009).
  18. Pott, P. Chirurgical observations relative to the cataract. Polypus of the Nose, the Cancer of the Scrotum, the Different Kinds of Ruptures and Mortification of the Toes and Feet. (L. Hawes, W. Clarke and R. Collins, London, 1775).
  19. Berenblum, I. The cocarcinogenic action of croton resin. Cancer Res. 1, 4448 (1941).
  20. Berenblum, I. & Shubik, P. An experimental study of the initiating state of carcinogenesis and a re-examination of the somatic cell mutation theory of cancer. Br. J. Cancer 3, 109118 (1949).
  21. Slaga, T.J. Overview of tumor promotion in animals. Environ. Health Perspect. 50, 314 (1983).
  22. Deelman, H.T. The part played by injury and repair in the development of cancer, with some remarks on the growth of experimental cancers. Proc. R. Soc. Med. 20, 11571158 (1927).
  23. Friedewald, W.F. & Rous, P. The initiating and promoting elements in tumor production: an analysis of the effects of tar, benzpyrene and methylcholanthrene on rabbit skin. J. Exp. Med. 80, 101126 (1944).
  24. Berenblum, I. A speculative review; the probable nature of promoting action and its significance in the understanding of the mechanism of carcinogenesis. Cancer Res. 14, 471477 (1954).
  25. Dolberg, D.S., Hollingsworth, R., Hertle, M. & Bissell, M.J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676678 (1985).
  26. Sieweke, M.H. & Bissell, M.J. The tumor-promoting effect of wounding: a possible role for TGF-β–induced stromal alterations. Crit. Rev. Oncog. 5, 297311 (1994).
  27. Martin, G.S. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227, 10211023 (1970).
  28. Bissell, M.J., Hatie, C. & Calvin, M. Is the product of the src gene a promoter? Proc. Natl. Acad. Sci. USA 76, 348352 (1979).
  29. Duran-Reynals, F. A hemorrhagic disease occurring in chicks inoculated with the Rous and Fuginami viruses. Yale J. Biol. Med. 13, 7798 (1940).
  30. Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397411 (1911).
  31. Dolberg, D.S. & Bissell, M.J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309, 552556 (1984).
  32. Stoker, A.W., Hatier, C. & Bissell, M.J. The embryonic environment strongly attenuates v-src oncogenesis in mesenchymal and epithelial tissues, but not in endothelia. J. Cell Biol. 111, 217228 (1990).
  33. Sieweke, M.H., Thompson, N.L., Sporn, M.B. & Bissell, M.J. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-β. Science 248, 16561660 (1990).
  34. Pierce, G.B., Stevens, L.C. & Nakane, P.K. Ultrastructural analysis of the early development of teratocarcinomas. J. Natl. Cancer Inst. 39, 755773 (1967).
  35. Pierce, G.B. Teratocarcinoma: model for a developmental concept of cancer. Curr. Top. Dev. Biol. 2, 223246 (1967).
  36. Stevens, L.C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev. Biol. 21, 364382 (1970).
  37. Stevens, L.C. The biology of teratomas. Adv. Morphog. 6, 131 (1967).
  38. Brinster, R.L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140, 10491056 (1974).
  39. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 72, 35853589 (1975).
  40. Illmensee, K. & Mintz, B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl. Acad. Sci. USA 73, 549553 (1976).
  41. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 18751885 (2004).
  42. Fujii, H., Cunha, G.R. & Norman, J.T. The induction of adenocarcinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inductor. J. Urol. 128, 858861 (1982).
  43. Hayashi, N., Cunha, G.R. & Wong, Y.C. Influence of male genital tract mesenchymes on differentiation of Dunning prostatic adenocarcinoma. Cancer Res. 50, 47474754 (1990).
  44. Petersen, O.W., Ronnov-Jessen, L., Howlett, A.R. & Bissell, M.J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. USA 89, 90649068 (1992).
  45. Howlett, A.R., Petersen, O.W., Steeg, P.S. & Bissell, M.J. A novel function for the nm23–H1 gene: overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth arrest. J. Natl. Cancer Inst. 86, 18381844 (1994).
  46. Weaver, V.M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231245 (1997).
  47. Weaver, V.M., Howlett, A.R., Langton-Webster, B., Petersen, O.W. & Bissell, M.J. The development of a functionally relevant cell culture model of progressive human breast cancer. Semin. Cancer Biol. 6, 175184 (1995).
  48. Rizki, A. et al. A human breast cell model of preinvasive to invasive transition. Cancer Res. 68, 13781387 (2008).
  49. Hendrix, M.J. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer 7, 246255 (2007).
  50. Postovit, L.M., Seftor, E.A., Seftor, R.E. & Hendrix, M.J. A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells 24, 501505 (2006).
  51. Bussard, K.M., Boulanger, C.A., Booth, B.W., Bruno, R.D. & Smith, G.H. Reprogramming human cancer cells in the mouse mammary gland. Cancer Res. 70, 63366343 (2010).
  52. Maher, J.J. & Bissell, D.M. Cell-matrix interactions in liver. Semin. Cell Biol. 4, 189201 (1993).
  53. Wolfe, J.N. Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37, 24862492 (1976).
  54. Boyd, N.F. et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 356, 227236 (2007).
  55. Sickles, E.A. Wolfe mammographic parenchymal patterns and breast cancer risk. AJR Am. J. Roentgenol. 188, 301303 (2007).
  56. Chin, K. et al. In situ analyses of genome instability in breast cancer. Nat. Genet. 36, 984988 (2004).
  57. Gudjonsson, T. et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115, 3950 (2002).
  58. Beliveau, A. et al. Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes Dev. 24, 28002811 (2010).
  59. Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239252 (2009).
  60. Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 3951 (2010).
  61. Mueller, M.M. & Fusenig, N.E. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839849 (2004).
  62. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392401 (2006).
  63. Bhowmick, N.A., Neilson, E.G. & Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332337 (2004).
  64. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 1518 (2002).
  65. Sympson, C.J., Bissell, M.J. & Werb, Z. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1. Semin. Cancer Biol. 6, 159163 (1995).
  66. Thomasset, N. et al. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am. J. Pathol. 153, 457467 (1998).
  67. Sternlicht, M.D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137146 (1999).
  68. Radisky, D.C. et al. Rac1b and reactive oxygen species mediate MMP-3–induced EMT and genomic instability. Nature 436, 123127 (2005).
  69. Bhowmick, N.A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848851 (2004).
  70. Schor, S.L., Schor, A.M., Rushton, G. & Smith, L. Adult, foetal and transformed fibroblasts display different migratory phenotypes on collagen gels: evidence for an isoformic transition during foetal development. J. Cell Sci. 73, 221234 (1985).
  71. Schor, S.L., Schor, A.M., Durning, P. & Rushton, G. Skin fibroblasts obtained from cancer patients display foetal-like migratory behaviour on collagen gels. J. Cell Sci. 73, 235244 (1985).
  72. Schor, S.L., Schor, A.M. & Rushton, G. Fibroblasts from cancer patients display a mixture of both foetal and adult-like phenotypic characteristics. J. Cell Sci. 90, 401407 (1988).
  73. Schor, S.L. et al. Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer Res. 63, 88278836 (2003).
  74. Camps, J.L. et al. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. USA 87, 7579 (1990).
  75. Olumi, A.F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 50025011 (1999).
  76. Barcellos-Hoff, M.H. & Ravani, S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 12541260 (2000).
  77. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. USA 98, 1207212077 (2001).
  78. Rønnov-Jessen, L. & Petersen, O.W. Induction of a-smooth muscle actin by transforming growth factor-β1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab. Invest. 68, 696707 (1993).
  79. Rønnov-Jessen, L., Petersen, O.W. & Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76, 69125 (1996).
  80. Rønnov-Jessen, L., Petersen, O.W., Koteliansky, V.E. & Bissell, M.J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95, 859873 (1995).
  81. Chang, H.Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).
  82. Chang, H.Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl. Acad. Sci. USA 102, 37383743 (2005).
  83. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518527 (2008).
  84. Toullec, A. et al. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol. Med. 2, 211230 (2010).
  85. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335348 (2005).
  86. Pollard, J.W. Macrophages define the invasive microenvironment in breast cancer. J. Leukoc. Biol. 84, 623630 (2008).
  87. Bissell, M.J. & Radisky, D. Putting tumours in context. Nat. Rev. Cancer 1, 4654 (2001).
  88. Pierce, G.B. & Speers, W.C. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 48, 19962004 (1988).
  89. Pierce, G.B. Relationship between differentiation and carcinogenesis. J. Toxicol. Environ. Health 2, 13351342 (1977).
  90. Kenny, P.A., Lee, G.Y. & Bissell, M.J. Targeting the tumor microenvironment. Front. Biosci. 12, 34683474 (2007).
  91. Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 16501659 (1986).
  92. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-a. Science 330, 827830 (2010).
  93. Cecchini, M.G. et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120, 13571372 (1994).
  94. Saadi, A. et al. Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proc. Natl. Acad. Sci. USA 107, 21772182 (2010).
  95. Farmer, P. et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat. Med. 15, 6874 (2009).
  96. Koleske, A.J., Baltimore, D. & Lisanti, M.P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA 92, 13811385 (1995).
  97. Williams, T.M. et al. Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am. J. Pathol. 169, 17841801 (2006).
  98. Witkiewicz, A.K. et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am. J. Pathol. 174, 20232034 (2009).
  99. Sloan, E.K. et al. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am. J. Pathol. 174, 20352043 (2009).
  100. Paulsson, J. et al. Prognostic significance of stromal platelet-derived growth factor b receptor expression in human breast cancer. Am. J. Pathol. 175, 334341 (2009).
  101. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 10091017 (2010).
  102. Balis, F.M. Evolution of anticancer drug discovery and the role of cell-based screening. J. Natl. Cancer Inst. 94, 7879 (2002).
  103. Colozza, M. et al. Achievements in systemic therapies in the pregenomic era in metastatic breast cancer. Oncologist 12, 253270 (2007).
  104. Anders, M. et al. Disruption of three-dimensional tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor. Proc. Natl. Acad. Sci. USA 100, 19431948 (2003).
  105. Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 59045912 (2008).
  106. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860867 (2002).
  107. Weaver, V.M. et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205216 (2002).
  108. Weigelt, B., Lo, A.T., Park, C.C., Gray, J.W. & Bissell, M.J. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res. Treat. 122, 3543 (2010).
  109. Polo, M.L. et al. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE 5, e10786 (2010).
  110. Wang, F. et al. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J. Natl. Cancer Inst. 94, 14941503 (2002).
  111. Muthuswamy, S.K., Li, D., Lelievre, S., Bissell, M.J. & Brugge, J.S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3, 785792 (2001).
  112. Park, C.C. et al. β1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 66, 15261535 (2006).
  113. Park, C.C., Zhang, H.J., Yao, E.S., Park, C.J. & Bissell, M.J. β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res. 68, 43984405 (2008).
  114. Olive, K.P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 14571461 (2009).
  115. Thompson, C.B. et al. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol. Cancer Ther. 9, 30523064 (2010).
  116. Levental, K.R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891906 (2009).
  117. Xu, R. et al. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. J. Cell Biol. 184, 5766 (2009).
  118. Bissell, M.J., Kenny, P.A. & Radisky, D.C. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb. Symp. Quant. Biol. 70, 343356 (2005).
  119. McMillin, D.W. et al. Tumor cell–specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat. Med. 16, 483489 (2010).
  120. Chen, A. et al. Endothelial cell migration and vascular endothelial growth factor expression are the result of loss of breast tissue polarity. Cancer Res. 69, 67216729 (2009).
  121. Kaplan, R.N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820827 (2005).
  122. Peinado, H., Lavothskin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer. Biol. published online, doi:doi:10.1016/j.semcancer.2011.01.002 (18 January 2011).
  123. Nelson, C.M. & Bissell, M.J. Of extracellular matrix, scaffolds and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287309 (2006).
  124. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571573 (1889).
  125. O'Reilly, M.S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277285 (1997).
  126. Ferrara, N., Hillan, K.J., Gerber, H.P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391400 (2004).
  127. Kupsch, P. et al. Results of a phase I trial of sorafenib (BAY 43–9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin. Colorectal Cancer 5, 188196 (2005).
  128. Pan, B.S. et al. MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res. 70, 15241533 (2010).
  129. Wolf, A.M. et al. The effect of zoledronic acid on the function and differentiation of myeloid cells. Haematologica 91, 11651171 (2006).
  130. Veltman, J.D. et al. Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma. Br. J. Cancer 103, 629641 (2010).
  131. Teitelbaum, S.L. Bone resorption by osteoclasts. Science 289, 15041508 (2000).
  132. Theoleyre, S. et al. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 15, 457475 (2004).
  133. Burger, J.A. & Peled, A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23, 4352 (2009).
  134. Fingleton, B. MMPs as therapeutic targets—still a viable option? Semin. Cell Dev. Biol. 19, 6168 (2008).
  135. Palermo, C. & Joyce, J.A. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol. Sci. 29, 2228 (2008).
  136. Bell-McGuinn, K.M., Garfall, A.L., Bogyo, M., Hanahan, D. & Joyce, J.A. Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res. 67, 73787385 (2007).
  137. Demaria, S. et al. Cancer and inflammation: promise for biologic therapy. J. Immunother. 33, 335351 (2010).
  138. Qiang, Y.W., Yao, L., Tosato, G. & Rudikoff, S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 103, 301308 (2004).
  139. Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P.G. & Anderson, K.C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat. Rev. Cancer 7, 585598 (2007).
  140. Rajkumar, S.V., Richardson, P.G., Hideshima, T. & Anderson, K.C. Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol. 23, 630639 (2005).

Download references

Author information

Affiliations

  1. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.

    • Mina J Bissell &
    • William C Hines

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Text and Figures (193k)

    Supplementary Table 1

Additional data