Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diseases in a dish: modeling human genetic disorders using induced pluripotent cells

Abstract

The derivation of induced pluripotent cells (iPSCs) from individuals suffering from genetic syndromes offers new opportunities for basic research into these diseases and the development of therapeutic compounds. iPSCs can self renew and can be differentiated to many cell types, offering a potentially unlimited source of material for study. In this review we discuss the conceptual and practical issues to consider when attempting to model genetic diseases using iPSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the issues to consider when modeling genetic diseases with iPSCs.

Similar content being viewed by others

References

  1. Odom, D.T. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet. 39, 730–732 (2007).

    Article  CAS  Google Scholar 

  2. Wilson, J.M. Animal models of human disease for gene therapy. J. Clin. Invest. 97, 1138–1141 (1996).

    Article  CAS  Google Scholar 

  3. Perel, P. et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. Br. Med. J. 334, 197 (2007).

    Article  CAS  Google Scholar 

  4. Savitz, S.I. A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: a need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp. Neurol. 205, 20–25 (2007).

    Article  CAS  Google Scholar 

  5. Gearhart, J. New potential for human embryonic stem cells. Science 282, 1061–1062 (1998).

    Article  CAS  Google Scholar 

  6. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  7. Mateizel, I. et al. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum. Reprod. 21, 503–511 (2006).

    Article  CAS  Google Scholar 

  8. Sermon, K.D. et al. Creation of a registry for human embryonic stem cells carrying an inherited defect: joint collaboration between ESHRE and hESCreg. Hum. Reprod. 24, 1556–1560 (2009).

    Article  CAS  Google Scholar 

  9. Urbach, A., Schuldiner, M. & Benvenisty, N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22, 635–641 (2004).

    Article  CAS  Google Scholar 

  10. Giudice, A. & Trounson, A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2, 422–433 (2008).

    Article  CAS  Google Scholar 

  11. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  12. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  Google Scholar 

  13. Ebert, A.D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  Google Scholar 

  14. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  Google Scholar 

  15. Marchetto, M.C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  CAS  Google Scholar 

  16. Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    Article  CAS  Google Scholar 

  17. Brennand, K.J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    Article  CAS  Google Scholar 

  18. Liu, G.H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472, 221–225 (2011).

    Article  CAS  Google Scholar 

  19. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    Article  CAS  Google Scholar 

  20. González, F., Boue, S. & Izpisua Belmonte, J.C. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat. Rev. Genet. 12, 231–242 (2011).

    Article  Google Scholar 

  21. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    Article  CAS  Google Scholar 

  22. Chin, M.H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123 (2009).

    Article  CAS  Google Scholar 

  23. Polo, J.M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855 (2010).

    Article  CAS  Google Scholar 

  24. Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 13, 541–549 (2011).

    Article  CAS  Google Scholar 

  25. Bar-Nur, O., Russ, H.A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9, 17–23 (2011).

    Article  CAS  Google Scholar 

  26. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  Google Scholar 

  27. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    Article  CAS  Google Scholar 

  28. Maherali, N. & Hochedlinger, K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605 (2008).

    Article  CAS  Google Scholar 

  29. Irion, S., Nostro, M.C., Kattman, S.J. & Keller, G.M. Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb. Symp. Quant. Biol. 73, 101–110 (2008).

    Article  CAS  Google Scholar 

  30. Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  31. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010).

    Article  CAS  Google Scholar 

  32. Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    Article  CAS  Google Scholar 

  33. Zhang, J. et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    Article  CAS  Google Scholar 

  34. Liu, G.H. et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8, 688–694 (2011).

    Article  CAS  Google Scholar 

  35. Saha, K. & Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5, 584–595 (2009).

    Article  CAS  Google Scholar 

  36. Zhu, H., Lensch, M.W., Cahan, P. & Daley, G.Q. Investigating monogenic and complex diseases with pluripotent stem cells. Nat. Rev. Genet. 12, 266–275 (2011).

    Article  CAS  Google Scholar 

  37. Nguyen, H.N. et al. LRRK2 mutant iPSC–derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011).

    Article  CAS  Google Scholar 

  38. Agarwal, S. et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292–296 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Vassena and M. Barragan Monasterio for their critical reading of the manuscript. Work in the laboratory of J.C.I.B. was funded by Ramon y Cajal, The Helmsley Charitable Trust, Sanofi-Aventis, The G. Harold and Leila Y. Mathers Charitable Foundation and Fundacion Cellex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisúa Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiscornia, G., Vivas, E. & Belmonte, J. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med 17, 1570–1576 (2011). https://doi.org/10.1038/nm.2504

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing