Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Under pressure: the search for the essential mechanisms of hypertension

Abstract

High blood pressure, or hypertension, is a very common disorder with a substantial impact on public health because of its associated complications. Despite the high prevalence of essential hypertension and years of research, the basic causes remain obscure. Here I review recent advances in understanding the pathophysiology of hypertension. I present a general overview of the field and, by necessity, use broad strokes to portray recent progress and place it in context. For this purpose, I use illustrative examples from the large number of important developments in hypertension research over the last five years. The intent of this review is to provide a sense of where the field is progressing, with an emphasis on work that sheds light on pathogenic mechanisms and that is therefore likely to inform new translational advances.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proposed three-compartment model for the disposition of sodium.
Figure 2: Key vascular signaling pathways in hypertension.
Figure 3: Regulatory mechanisms for blood pressure are targets for therapy in hypertension.

Similar content being viewed by others

References

  1. Lawes, C.M., Vander Hoorn, S. & Rodgers, A. Global burden of blood-pressure related disease. Lancet 371, 1513–1518 (2008).

    Article  PubMed  Google Scholar 

  2. The VA Cooperative Study Group. Effects of treatment on morbidity of hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. J. Am. Med. Assoc. 202, 1028–1034 (1967).

  3. Chobanian, A. The hypertension paradox: more uncontrolled disease despite improving therapy. N. Engl. J. Med. 361, 878–887 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Guyton, A.C. Blood pressure control—special role of the kidneys and body fluids. Science 252, 1813–1816 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Meneton, P., Jeunmaitre, X., de Wardener, H. & MacGregor, G. LInks between dietary salt intake, renal salt handling, blood pressure and cardiovascular disease. Physiol. Rev. 85, 679–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Group & the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). J. Am. Med. Assoc. 288, 2981–2997 (2002).

  7. Rettig, R. & Grisk, O. The kidney as a determinant of genetic hypertension: evidence from renal transplantation studies. Hypertension 46, 463–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Crowley, S.D. et al. Angiotensin II causes hypertension and cardiac hypertrophy via its receptors in the kidney. Proc. Natl. Acad. Sci. USA 103, 17985–17990 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crowley, S.D. et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J. Clin. Invest. 115, 1092–1099 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gurley, S.B. et al. AT1A Angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 13, 469–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, H. et al. Renal proximal tubule angiotensin AT1A receptors regulate blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1209–R1211 (2011).

    Google Scholar 

  12. Navar, L.G., Kobori, H., Prieto, M.C. & Gonzalez-Villalobos, R.A. Intratubular renin-angiotensin system in hypertension. Hypertension 57, 355–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Guzik, T.J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cowley, A.W. Long-term control of arterial blood pressure. Physiol. Rev. 72, 231–300 (1992).

    Article  PubMed  Google Scholar 

  16. Wirth, A. et al. G12–G13-LARG–mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Guilluy, C. et al. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat. Med. 16, 183–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Packard, R.R., Lichtman, A.H. & Libby, P. Innate and adaptive immunity in atherosclerosis. Semin. Immunopathol. 31, 5–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muller, D.N. et al. Immunosuppressive treatment protects against angiotensin II–induced renal damage. Am. J. Pathol. 161, 1679–1693 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nataraj, C. et al. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J. Clin. Invest. 104, 1693–1701 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Madhur, M.S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Crowley, S. et al. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1089–R1097 (2009).

    Article  Google Scholar 

  23. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marvar, P.J. et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II induced hypertension. Circ. Res. 107, 263–270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lifton, R.P., Gharavi, A. & Geller, D. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The International Consortium for Blood Pressure Genome-Wide Association Studies et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

  30. Auchus, R.J. The genetics, pathophyioslogy and management of human deficiencies of P450c17. Endocrinol. Metab. Clin. North Am. 30, 101–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. John, S.W. et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267, 679–681 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41, 348–353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ge, Y. et al. Collecting duct specific knockout of the ednothelin B recpetor causes hypertension and sodium retention. Am. J. Physiol. Renal. Physiol. 291, F1274–F1280 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Cirulli, E.T. & Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ji, W. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40, 592–599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, M. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331, 768–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sacks, F.M. et al. Effects on blood pressure of reduced dietary sodium and the dietary approches to stop hypertension (DASH) diet. N. Engl. J. Med. 344, 3–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Tissot, A.C. et al. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet 371, 821–827 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Malpas, S.C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev. 90, 513–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Mu, S. et al. Epigenetic modulation of the renal β-adrenergic–WNK4 pathway in salt-sensitive hypertension. Nat. Med. 17, 573–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Simplicity HTN-2 Investigators et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Simplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903–1909 (2010).

  43. Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009).

    Article  PubMed  Google Scholar 

  44. Heusser, K. et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55, 619–626 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's work in this area has been supported by the US National Institutes of Health (HL056122), the Veteran's Affairs Research Administration and the Edna and Fred L. Mandel Jr. Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M Coffman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffman, T. Under pressure: the search for the essential mechanisms of hypertension. Nat Med 17, 1402–1409 (2011). https://doi.org/10.1038/nm.2541

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing