Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke–induced pulmonary injury and emphysema

Abstract

Rtp801 (also known as Redd1, and encoded by Ddit4), a stress-related protein triggered by adverse environmental conditions, inhibits mammalian target of rapamycin (mTOR) by stabilizing the TSC1-TSC2 inhibitory complex and enhances oxidative stress–dependent cell death. We postulated that Rtp801 acts as a potential amplifying switch in the development of cigarette smoke–induced lung injury, leading to emphysema. Rtp801 mRNA and protein were overexpressed in human emphysematous lungs and in lungs of mice exposed to cigarette smoke. The regulation of Rtp801 expression by cigarette smoke may rely on oxidative stress–dependent activation of the CCAAT response element in its promoter. We also found that Rtp801 was necessary and sufficient for nuclear factor-κB (NF-κB) activation in cultured cells and, when forcefully expressed in mouse lungs, it promoted NF-κB activation, alveolar inflammation, oxidative stress and apoptosis of alveolar septal cells. In contrast, Rtp801 knockout mice were markedly protected against acute cigarette smoke–induced lung injury, partly via increased mTOR signaling, and, when exposed chronically to cigarette smoke, against emphysema. Our data support the notion that Rtp801 may represent a major molecular sensor and mediator of cigarette smoke–induced lung injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhanced expression of RTP801 in human emphysematous lungs.
Figure 2: Cigarette smoke–induced upregulation of Rtp801 expression occurs in lung septal but not resident or infiltrating inflammatory cells and relies on oxidative stress–dependent activation of the CCAAT promoter region.
Figure 3: Rtp801-dependent NF-κB activation by cigarette smoke.
Figure 4: Forced in vivo overexpression of human RTP801 in mouse lungs enhances oxidative stress, inflammation and alveolar cell apoptosis.
Figure 5: Rtp801-knockout mice are protected against cigarette smoke–induced pulmonary inflammation, apoptosis and emphysema.
Figure 6: mTOR regulates lung homeostasis and inflammatory responses due to cigarette smoke in wild-type (WT) and Rtp801-knockout mice.

Similar content being viewed by others

References

  1. Yoshida, T. & Tuder, R.M. Pathobiology of cigarette smoke–induced chronic obstructive pulmonary disease. Physiol. Rev. 87, 1047–1082 (2007).

    Article  CAS  Google Scholar 

  2. Tuder, R.M., Yoshida, T., Arap, W., Pasqualini, R. & Petrache, I. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc. Am. Thorac. Soc. 3, 503–510 (2006).

    Article  CAS  Google Scholar 

  3. Tuder, R.M. et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Biol. 29, 88–97 (2003).

    Article  CAS  Google Scholar 

  4. Ryter, S.W., Chen, Z.H., Kim, H.P. & Choi, A.M. Autophagy in chronic obstructive pulmonary disease: homeostatic or pathogenic mechanism? Autophagy 5, 235–237 (2009).

    Article  CAS  Google Scholar 

  5. Houghton, A.M. et al. Elastin fragments drive disease progression in a murine model of emphysema. J. Clin. Invest. 116, 753–759 (2006).

    Article  CAS  Google Scholar 

  6. Petrache, I. et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med. 11, 491–498 (2005).

    Article  CAS  Google Scholar 

  7. Weathington, N.M. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat. Med. 12, 317–323 (2006).

    Article  CAS  Google Scholar 

  8. Shoshani, T. et al. Identification of a novel hypoxia-inducible factor 1–responsive gene, RTP801, involved in apoptosis. Mol. Cell. Biol. 22, 2283–2293 (2002).

    Article  CAS  Google Scholar 

  9. Ellisen, L.W. et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol. Cell 10, 995–1005 (2002).

    Article  CAS  Google Scholar 

  10. Brafman, A. et al. Inhibition of oxygen-induced retinopathy in RTP801-deficient mice. Invest. Ophthalmol. Vis. Sci. 45, 3796–3805 (2004).

    Article  Google Scholar 

  11. Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893–2904 (2004).

    Article  CAS  Google Scholar 

  12. Reiling, J.H. & Hafen, E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev. 18, 2879–2892 (2004).

    Article  CAS  Google Scholar 

  13. Sofer, A., Lei, K., Johannessen, C.M. & Ellisen, L.W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol. Cell. Biol. 25, 5834–5845 (2005).

    Article  CAS  Google Scholar 

  14. Corradetti, M.N., Inoki, K. & Guan, K.L. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J. Biol. Chem. 280, 9769–9772 (2005).

    Article  CAS  Google Scholar 

  15. Arsham, A.M., Howell, J.J. & Simon, M.C. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655–29660 (2003).

    Article  CAS  Google Scholar 

  16. Hudson, C.C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  Google Scholar 

  17. Katiyar, S. et al. REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. EMBO Rep. 10, 866–872 (2009).

    Article  CAS  Google Scholar 

  18. Rahman, I. et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 166, 490–495 (2002).

    Article  Google Scholar 

  19. Rangasamy, T. et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Invest. 114, 1248–1259 (2004).

    Article  CAS  Google Scholar 

  20. Sussan, T.E. et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke–induced emphysema and cardiac dysfunction in mice. Proc. Natl. Acad. Sci. USA 106, 250–255 (2009).

    Article  CAS  Google Scholar 

  21. Lin, L., Stringfield, T.M., Shi, X. & Chen, Y. Arsenite induces a cell stress-response gene, RTP801, through reactive oxygen species and transcription factors Elk-1 and CCAAT/enhancer-binding protein. Biochem. J. 392, 93–102 (2005).

    Article  CAS  Google Scholar 

  22. Marwick, J.A. et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am. J. Respir. Cell Mol. Biol. 31, 633–642 (2004).

    Article  CAS  Google Scholar 

  23. Vlahos, R. et al. Differential protease, innate immunity and NF-κB induction profiles during lung inflammation induced by subchronic cigarette smoke exposure in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L931–L945 (2006).

    Article  CAS  Google Scholar 

  24. Iimuro, Y. et al. NFκB prevents apoptosis and liver dysfunction during liver regeneration. J. Clin. Invest. 101, 802–811 (1998).

    Article  CAS  Google Scholar 

  25. Campbell, K.J. & Perkins, N.D. Post-translational modification of RelA(p65) NF-κB. Biochem. Soc. Trans. 32, 1087–1089 (2004).

    Article  CAS  Google Scholar 

  26. Zampetaki, A., Mitsialis, S.A., Pfeilschifter, J. & Kourembanas, S. Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expression in murine macrophages via NF-κB: the prominent role of p42/ p44 and PI3 kinase pathways. FASEB J. 18, 1090–1092 (2004).

    Article  CAS  Google Scholar 

  27. Wikenheiser, K.A. et al. Production of immortalized distal respiratory epithelial cell lines from surfactant protein C/simian virus 40 large tumor antigen transgenic mice. Proc. Natl. Acad. Sci. USA 90, 11029–11033 (1993).

    Article  CAS  Google Scholar 

  28. DeYoung, M.P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).

    Article  CAS  Google Scholar 

  29. Flotte, T.R. & Carter, B.J. Adeno-associated virus vectors for gene therapy. Gene Ther. 2, 357–362 (1995).

    CAS  PubMed  Google Scholar 

  30. Hautamaki, R.D., Kobayashi, D.K., Senior, R.M. & Shapiro, S.D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  Google Scholar 

  31. Inoki, K., Ouyang, H., Li, Y. & Guan, K.L. Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev. 69, 79–100 (2005).

    Article  CAS  Google Scholar 

  32. Shi, M.M., Chong, I., Godleski, J.J. & Paulauskis, J.D. Regulation of macrophage inflammatory protein-2 gene expression by oxidative stress in rat alveolar macrophages. Immunology 97, 309–315 (1999).

    Article  CAS  Google Scholar 

  33. Guerassimov, A. et al. The development of emphysema in cigarette smoke–exposed mice is strain dependent. Am. J. Respir. Crit. Care Med. 170, 974–980 (2004).

    Article  Google Scholar 

  34. Churg, A. et al. Macrophage metalloelastase mediates acute cigarette smoke–induced inflammation via tumor necrosis factor-alpha release. Am. J. Respir. Crit. Care Med. 167, 1083–1089 (2003).

    Article  Google Scholar 

  35. Elias, J.A., Kang, M.J., Crouthers, K., Homer, R. & Lee, C.G. State of the art. Mechanistic heterogeneity in chronic obstructive pulmonary disease: insights from transgenic mice. Proc. Am. Thorac. Soc. 3, 494–498 (2006).

    Article  CAS  Google Scholar 

  36. Giordano, R.J. et al. Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. J. Biol. Chem. 283, 29447–29460 (2008).

    Article  CAS  Google Scholar 

  37. Tuder, R.M., Petrache, I., Elias, J.A., Voelkel, N.F. & Henson, P.M. Apoptosis and emphysema: the missing link. Am. J. Respir. Cell Mol. Biol. 28, 551–554 (2003).

    Article  CAS  Google Scholar 

  38. Gery, S. et al. RTP801 is a novel retinoic acid–responsive gene associated with myeloid differentiation. Exp. Hematol. 35, 572–578 (2007).

    Article  CAS  Google Scholar 

  39. Vandivier, R.W., Henson, P.M. & Douglas, I.S. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129, 1673–1682 (2006).

    Article  Google Scholar 

  40. Lee, S.H. et al. Antielastin autoimmunity in tobacco smoking–induced emphysema. Nat. Med. 13, 567–569 (2007).

    Article  CAS  Google Scholar 

  41. Cosio, M.G., Saetta, M. & Agusti, A. Immunologic aspects of chronic obstructive pulmonary disease. N. Engl. J. Med. 360, 2445–2454 (2009).

    Article  CAS  Google Scholar 

  42. Rahman, I. & Adcock, I.M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 28, 219–242 (2006).

    Article  CAS  Google Scholar 

  43. Kang, M.J. et al. Cigarette smoke selectively enhances viral PAMP and viruses-induced pulmonary innate immunity and remodeling responses. J. Clin. Invest. 118, 2771–2784 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, H.P. et al. Autophagic proteins regulate cigarette smoke–induced apoptosis: protective role of heme oxygenase-1. Autophagy 4, 887–895 (2008).

    Article  CAS  Google Scholar 

  45. Gibbs, P.E. & Maines, M.D. Biliverdin inhibits activation of NF-κB: reversal of inhibition by human biliverdin reductase. Int. J. Cancer 121, 2567–2574 (2007).

    Article  CAS  Google Scholar 

  46. Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577 (2008).

    Article  CAS  Google Scholar 

  47. Shah, O.J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).

    Article  CAS  Google Scholar 

  48. Bhaskar, P.T. et al. mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition. Mol. Cell. Biol. 29, 5136–5147 (2009).

    Article  CAS  Google Scholar 

  49. Zhang, Q., Adiseshaiah, P., Kalvakolanu, D.V. & Reddy, S.P. A phosphatidylinositol 3-kinase–regulated Akt-independent signaling promotes cigarette smoke–induced FRA-1 expression. J. Biol. Chem. 281, 10174–10181 (2006).

    Article  CAS  Google Scholar 

  50. Lee, D.F. et al. IKKβ Suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

    Article  CAS  Google Scholar 

  51. Morelon, E., Stern, M. & Kreis, H. Interstitial pneumonitis associated with sirolimus therapy in renal-transplant recipients. N. Engl. J. Med. 343, 225–226 (2000).

    Article  CAS  Google Scholar 

  52. Fujitani, Y. & Trifilieff, A. In vivo and in vitro effects of SAR 943, a rapamycin analogue, on airway inflammation and remodeling. Am. J. Respir. Crit. Care Med. 167, 193–198 (2003).

    Article  Google Scholar 

  53. Petrache, I. et al. α-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol. 169, 1155–1166 (2006).

    Article  CAS  Google Scholar 

  54. Neuhaus, P., Klupp, J. & Langrehr, J.M. mTOR inhibitors: an overview. Liver Transpl. 7, 473–484 (2001).

    Article  CAS  Google Scholar 

  55. Faivre, S., Kroemer, G. & Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 5, 671–688 (2006).

    Article  CAS  Google Scholar 

  56. McGrath-Morrow, S.A. et al. Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. Am. J. Respir. Cell Mol. Biol. 32, 420–427 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Stevens (University of South Alabama) for providing the primary rat lung microvascular endothelial cells, J. Whitsett (University of Cincinnati) for allowing us to use the MLE-15 cells, T. Flotte and P. Cruz (Universities of Florida and Massachusetts, respectively) for preparing the AAV5 vectors, Y. Chen (University of Indiana) for the DDIT4 promoter constructs, I. Rahman (University of Rochester) for sharing cigarette smoke–sensitive and cigarette smoke–resistant mouse lung specimens, D. Brenner (University of California, San Diego) for the adenovirus IκB superrepressor, L. Ellison (Dana-Farber Cancer Center) for providing the DDIT4-RPAA construct and S. Reynolds (National Jewish Health) for the mouse-specific clara cell antigen 10 antibody. This work was supported by the grants R01 US National Heart, Lung, and Blood Institute (NHLBI) RO1 66554, Alpha 1 Foundation, Flight Attendant Medical Research Institute and Quark Pharmaceuticals (to R.M.T.); R01 NHLBI 077328 (to I.P.), COPD SCCOR P01–NHLBI 085609, Project 1 (to R.M.T. and I.P.) and Project 4 (to S.B.), RO1 NHLBI RO1 081205 to (S.B.) and NHLBI R01 HL082541–01 to (S.D.S.).

Author information

Authors and Affiliations

Authors

Contributions

T.Y., E.F. and R.M.T. designed the experiments, analyzed the data and composed the manuscript; T.Y., I.M., A.K.B., J.B., M.P., L. Zhang, A. Gandjeva, L. Zhen, U.C., T.M., A.R., E.B., H.A., N.N., A. Gelfand and I.P. performed in vitro and in vivo experiments; R.K.T., T.R., T.S. and S.B. provided mouse lung samples for Rtp801 expression studies; G.C. provided normal human lung samples for Rtp801 expression studies; M.M. and S.D.S. performed the chronic exposure to cigarette smoke.

Corresponding authors

Correspondence to Elena Feinstein or Rubin M Tuder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 854 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, T., Mett, I., Bhunia, A. et al. Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke–induced pulmonary injury and emphysema. Nat Med 16, 767–773 (2010). https://doi.org/10.1038/nm.2157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing